Results for 'Everett interpretation of quantum mechanics'

988 found
Order:
  1. The Everett interpretation of quantum mechanics: Many worlds or none?Howard Stein - 1984 - Noûs 18 (4):635-652.
  2.  29
    The Everett Interpretation of Quantum Mechanics. Collected Works 1955-1980 with Commentary. Hugh Everett III, edited by Jeffrey A. Barrett & Peter Byrne. Princeton: Princeton University Press. [REVIEW]Guido Bacciagaluppi - unknown
    This is a review of Barrett and Byrne's commented edition of Everett's collected works, originally published in HOPOS 3, 348-352, but here including footnotes and references.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  27
    A note on the Everett interpretation of quantum mechanics.Paul Benioff - 1978 - Foundations of Physics 8 (9-10):709-720.
    Three aspects of the Everett interpretation of quantum mechanics are considered. It is first shown that the proof of the metatheorem is not complete—thus it is an open question as to whether or not it is true. Next, some difficulties for the Everett interpretation and the metatheorem, which arise from consideration of the physics developed by observers in maverick universes, are discussed. Finally, it is shown that the universal state description of an ever-branching universe (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  25
    Hugh Everett III. The Everett Interpretation of Quantum Mechanics: Collected Works, 1955–1980, with Commentary. Edited by, Jeffrey A. Barrett and Peter Byrne. xii + 392 pp., illus., apps., index. Princeton, N.J.: Princeton University Press, 2012. $75. [REVIEW]Christoph Lehner - 2015 - Isis 106 (1):220-221.
  5.  46
    Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
  6.  45
    Jeffrey A. Barrett and Peter Byrne, eds., The Everett Interpretation of Quantum Mechanics: Collected Works 1955-1980. Reviewed by. [REVIEW]Sheldon Richmond - 2015 - Philosophy in Review 35 (3):127-129.
    Spinoza’s metaphysics has returned in the work of Hugh Everett as physics— as a complete and consistent interpretation of Quantum Mechanics that resolves the traditional puzzles of the standard interpretation of Quantum Mechanics.
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  18
    Jeffrey A. Barrett and Peter Byrne, eds. The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary. Princeton, NJ: Princeton University Press, 2012. Pp. 392. $75.00. [REVIEW]Guido Bacciagaluppi - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science 3 (2):348-352.
  8. Locality in the Everett Interpretation of Quantum Field Theory.Mark A. Rubin - 2002 - Foundations of Physics 32 (10):1495-1523.
    Recently it has been shown that transformations of Heisenberg-picture operators are the causal mechanism which allows Bell-theorem-violating correlations at a distance to coexist with locality in the Everett interpretation of quantum mechanics. A calculation to first order in perturbation theory of the generation of EPRB entanglement in nonrelativistic fermionic field theory in the Heisenberg picture illustrates that the same mechanism leads to correlations without nonlocality in quantum field theory as well. An explicit transformation is given (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9.  96
    The many-worlds interpretation of quantum mechanics: Psychological versus physical bases for the multiplicity of "worlds".Howard Barnum - unknown
    This unpublished 1990 preprint argues that a crucial distinction in discussions of the many-worlds interpretation of quantum mechanics (MWI) is that between versions of the interpretation positing a physical multiplicity of worlds, and those in which the multiplicity is merely psychological, and due to the splitting of consciousness upon interaction with amplified quantum superpositions. It is argued that Everett's original version of the MWI belongs to the latter class, and that most of the criticisms (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  49
    The theory of the universal wave function.Hugh Everett Iii - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton Up. pp. 3.
  11.  40
    Assessing the Montevideo interpretation of quantum mechanics.Jeremy Butterfield - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part A):75-85.
    This paper gives a philosophical assessment of the Montevideo interpretation of quantum theory, advocated by Gambini, Pullin and co-authors. This interpretation has the merit of linking its proposal about how to solve the measurement problem to the search for quantum gravity: namely by suggesting that quantum gravity makes for fundamental limitations on the accuracy of clocks, which imply a type of decoherence that “collapses the wave-packet”. I begin by sketching the topics of decoherence, and (...) clocks, on which the interpretation depends. Then I expound the interpretation, from a philosopher's perspective. Finally, in Section 6, I argue that the interpretation, at least as developed so far, is best seen as a form of the Everett interpretation: namely with an effective or approximate branching, that is induced by environmental decoherence of the familiar kind, and by the Montevideans’ “temporal decoherence”. (shrink)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  12.  70
    Dieks' realistic interpretation of quantum mechanics: A comment.Howard Barnum - unknown
    D. Dieks has proposed a semantical rule which he claims yields a realistic interpretation of the formalism of quantum mechanics without the projection postulate. I argue that his proposal is unacceptable because it violates a natural requirement of psychophysical parallelism. His "semantical rule" is not an acceptable interpretive rule because it does not identify structures in the theory with structures in our experience, but postulates a merely probabilistic relationship between the two. Dieks' interpretation is contrasted with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  17
    Jeffrey A. Barrett and Peter Byrne , The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary. Princeton and Oxford: Princeton University Press, 2012, Pp. xii+389. ISBN 978-0-691-14507-5. £52.00. [REVIEW]Tilman Sauer - 2013 - British Journal for the History of Science 46 (4):731-732.
  14.  35
    Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics.Emily Adlam - 2022 - Foundations of Physics 52 (5):1-43.
    Recently there has been a great deal of interest in tabletop experiments intended to exhibit the quantum nature of gravity by demonstrating that it can induce entanglement. In order to evaluate these experiments, we must determine if there is any interesting class of possibilities that will be convincingly ruled out if it turns out that gravity can indeed induce entanglement. In particular, since one argument for the significance of these experiments rests on the claim that they demonstrate the existence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  93
    On Everett’s Formulation of Quantum Mechanics.Jeffrey A. Barrett - 1997 - The Monist 80 (1):70-96.
    Everett wanted a formulation of quantum mechanics that (i) took the linear dynamics to be a complete and accurate description of the time-evolution of all physical systems and (ii) logically entailed the same subjective appearances predicted by the standard formulation of quantum mechanics. While most everyone would agree with this description of Everett’s project, there is little agreement on exactly how his relative-state formulation was supposed to work. In this paper, I consider two very (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  16. Interpreting the quantum mechanics of cosmology.David Wallace - forthcoming - In A. Ijjas & B. Loewer (eds.), Philosophy of Cosmology: an Introduction. Oxford University Press.
    Quantum theory plays an increasingly significant role in contemporary early-universe cosmology, most notably in the inflationary origins of the fluctuation spectrum of the microwave background radiation. I consider the two main strategies for interpreting standard quantum mechanics in the light of cosmology. I argue that the conceptual difficulties of the approaches based around an irreducible role for measurement - already very severe - become intolerable in a cosmological context, whereas the approach based around Everett's original idea (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  79
    On Some Metaphysical problems of Many Worlds Interpretation of Quantum Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts themselves still do not all agree what to make of it. The area of disagreement centers primarily around the problem of describing observations. Formally, the so-called quantum measurement problem can be defined as follows: the result of a measurement is a superposition of vectors, each representing (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  80
    On Probabilities in the Many Worlds Interpretation of Quantum Mechanics.Florian Boge - 2016 - KUPS - Kölner UniversitätsPublikationsServer.
    Quantum Mechanics notoriously faces a measurement problem, the problem that the unitary time evolution, encoded in its dynamical equations, together with the kinematical structure of the theory generally implies the non-existence of definite measurement outcomes. There have been multiple suggestions to solve this problem, among them the so called many worlds interpretation that originated with the work of Hugh Everett III. According to it, the quantum state and time evolution fully and accurately describe nature as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Pan(proto)psychism and the Relative-State Interpretation of Quantum Mechanics.Yu Feng - manuscript
    This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  65
    Relative Frequency and Probability in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics.Mark A. Rubin - 2003 - Foundations of Physics 33 (3):379-405.
    The existence of probability in the sense of the frequency interpretation, i.e., probability as “long term relative frequency,” is shown to follow from the dynamics and the interpretational rules of Everett quantum mechanics in the Heisenberg picture. This proof is free of the difficulties encountered in applying to the Everett interpretation previous results regarding relative frequency and probability in quantum mechanics. The ontology of the Everett interpretation in the Heisenberg picture (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  7
    The Tyranny in Science: The Case of Hugh Everett’s Universal Wave Theory Formulation of Quantum Mechanics.Sheldon Richmond - 2019 - In Raphael Sassower & Nathaniel Laor (eds.), The Impact of Critical Rationalism: Expanding the Popperian Legacy Through the Works of Ian C. Jarvie. Springer Verlag. pp. 225-239.
    Hugh Everett’s “Universal Wave Theory Formulation of Quantum Mechanics”, though endorsed and promoted by his mentor John Wheeler, was dismissed by the mainstream in quantum mechanics. Why was it sidelined by those who endorsed the Copenhagen interpretation and John von Neumann’s approach to the famous measurement problem? Everett’s theory was taken up later by Bryce DeWitt under an interpretation, the many worlds universe theory, that is not actually how Everett interpreted his (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  20
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of (...)
  24. The many computations interpretation (MCI) of quantum mechanics.Jacques Mallah - manuscript
    Computationalism provides a framework for understanding how a mathematically describable physical world could give rise to conscious observations without the need for dualism. A criterion is proposed for the implementation of computations by physical systems, which has been a problem for computationalism. Together with an independence criterion for implementations this would allow, in principle, prediction of probabilities for various observations based on counting implementations. Applied to quantum mechanics, this results in a Many Computations Interpretation (MCI), which is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  53
    The Everett Interpretation: Probability.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the second of two reviews of the Everett interpretation, and focuses on probability. Branching processes are identified as chance processes, and the squares of branch amplitudes are chances. Since branching is emergent, physical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  26. What it feels like to be in a superposition, and why: Consciousness and the interpretation of Everett's quantum mechanics.Christoph Lehner - 1997 - Synthese 110 (2):191-216.
    This paper attempts an interpretation of Everett's relative state formulation of quantum mechanics that avoids the commitment to new metaphysical entities like ‘worlds’ or ‘minds’. Starting from Everett's quantum mechanical model of an observer, it is argued that an observer's belief to be in an eigenstate of the measurement (corresponding to the observation of a well-defined measurement outcome) is consistent with the fact that she objectively is in a superposition of such states. Subjective states (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  33
    The Everett Interpretation: Structure.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the first of two reviews of the Everett interpretation, and focuses on structure, with particular attention to the role of decoherence theory. Written in terms of the quantum histories formalism, decoherence theory (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  28. The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  29.  19
    Not Just Many Worlds but Many Universes? A Problem for the Many Worlds View of Quantum Mechanics.Peter Baumann - 2022 - Metaphysica 23 (2):295-305.
    The many-worlds view is one of the most discussed “interpretations” of quantum mechanics. As is well known, this view has some very controversial and much discussed aspects. This paper focuses on one particular problem arising from the combination of quantum mechanics with Special Relativity. It turns out that the ontology of the many-worlds view – the account of what there is and what branches of the universe exist – is relative to inertial frames. If one wants (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. The single-mind and many-minds versions of quantum mechanics.Jeffrey A. Barrett - 1995 - Erkenntnis 42 (1):89-105.
    There is a long tradition of trying to find a satisfactory interpretation of Everett's relative-state formulation of quantum mechanics. Albert and Loewer recently described two new ways of reading Everett: one we will call the single-mind theory and the other the many-minds theory. I will briefly describe these theories and present some of their merits and problems. Since both are no-collapse theories, a significant merit is that they can take advantage of certain properties of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  31. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
  32. The transactional interpretation of quantum mechanics.John G. Cramer - 1986 - Reviews of Modern Physics 58 (3):647-687.
    Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   126 citations  
  33. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  26
    Everettian Interpretations of Quantum Mechanics.Christina Conroy - 2016 - Internet Encyclopedia of Philosophy.
    Everettian Interpretations of Quantum Mechanics Between the 1920s and the 1950s, the mathematical results of quantum mechanics were interpreted according to what is often referred to as “the standard interpretation” or the “Copenhagen interpretation.” This interpretation is known as the “collapse interpretation" because it supposes that an observer external to a system causes the system, … Continue reading Everettian Interpretations of Quantum Mechanics →.
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  82
    Interpretations of quantum mechanics: A critical survey.Michele Caponigro - unknown
    This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Copenhagen interpretation of quantum mechanics.Jan Faye - 2008 - Stanford Encyclopedia of Philosophy.
    As the theory of the atom, quantum mechanics is perhaps the most successful theory in the history of science. It enables physicists, chemists, and technicians to calculate and predict the outcome of a vast number of experiments and to create new and advanced technology based on the insight into the behavior of atomic objects. But it is also a theory that challenges our imagination. It seems to violate some fundamental principles of classical physics, principles that eventually have become (...)
    Direct download  
     
    Export citation  
     
    Bookmark   64 citations  
  37.  35
    Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness.W. M. de Muynck, W. De Baere & H. Martens - 1994 - Foundations of Physics 24 (12):1589-1664.
    The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  38. Van Fraassen's modal model of quantum mechanics.Nancy Cartwright - 1974 - Philosophy of Science 41 (2):199-202.
    Bas van Fraassen in [4] has recently tried to use modal logic to solve the measurement problem of quantum mechanics. His model is based on a method of expressing quantum states developed by Hugh Everett [1] called the “relative state formulation.” Unfortunately, Everett's mathematics cannot be generalized as van Fraassen requires. The difficulty itself is elementary enough. But a revision of van Fraassen's postulates can save the mathematics only on pain of making the whole study (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  39. The Interpretation of Quantum Mechanics.Jeffrey Bub - 1978 - Erkenntnis 12 (3):399-402.
    No categories
     
    Export citation  
     
    Bookmark   9 citations  
  40.  63
    Spatial Degrees of Freedom in Everett Quantum Mechanics.Mark A. Rubin - 2006 - Foundations of Physics 36 (8):1115-1159.
    Stapp claims that, when spatial degrees of freedom are taken into account, Everett quantum mechanics is ambiguous due to a “core basis problem.” To examine an aspect of this claim I generalize the ideal measurement model to include translational degrees of freedom for both the measured system and the measuring apparatus. Analysis of this generalized model using the Everett interpretation in the Heisenberg picture shows that it makes unambiguous predictions for the possible results of measurements (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. The Interpretation of Quantum Mechanics.Jeffrey Bub - 1976 - British Journal for the Philosophy of Science 27 (3):295-297.
     
    Export citation  
     
    Bookmark   8 citations  
  42. The Interpretation of Quantum Mechanics.M. Audi & J. M. Jauch - 1977 - British Journal for the Philosophy of Science 28 (1):65-74.
     
    Export citation  
     
    Bookmark   5 citations  
  43. The interpretation of quantum mechanics.Max Born - 1953 - British Journal for the Philosophy of Science 4 (14):95-106.
  44. Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
  45. The Interpretation of Quantum Mechanics and the Measurement Process.Peter Mittelstaedt - 1998 - British Journal for the Philosophy of Science 49 (4):649-651.
  46.  29
    The Interpretation of Quantum Mechanics: Dublin Seminars and Other Unpublished Essays. Erwin Schrodinger, Michel Bitbol.James T. Cushing - 1996 - Isis 87 (3):570-571.
  47. Centering the Everett Interpretation.Isaac Wilhelm - 2022 - Philosophical Quarterly 72 (4):1019-1039.
    I propose an account of probability in the Everett interpretation of quantum mechanics. According to the account, probabilities are objective chances of centered propositions. As I show, the account solves a number of problems concerning the role of probability in the Everett interpretation. It also challenges an implicit assumption, concerning the aim and scope of fundamental physical theories, that is made throughout the philosophy of physics literature.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48.  66
    Kochen's Interpretation of Quantum Mechanics.Frank Arntzenius - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:241 - 249.
    Kochen has suggested an interpretation of quantum mechanics in which he denies that wavepackets ever collapse, while affirming that measurements have definite results. In this paper I attempt to show that his interpretation is untenable. I then suggest ways in which to construct similar, but more satisfactory, hidden variable interpretations.
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  49.  25
    Heisenberg and the Interpretation of Quantum Mechanics : The Physicist as Philosopher.Kristian Camilleri - 2009 - University of Melbourne.
    New perspective on Heisenberg's interpretation of quantum mechanics for researchers and graduate students in the history and philosophy of physics.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  50. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
1 — 50 / 988