Results for 'proteostasis'

7 found
Order:
  1.  21
    mTORC1 senses stresses: Coupling stress to proteostasis.Kuo-Hui Su & Chengkai Dai - 2017 - Bioessays 39 (5).
    Beyond protein synthesis and autophagy, emerging evidence has implicated mTORC1 in regulating protein folding and proteasomal degradation as well, highlighting its prominent role in cellular proteome homeostasis or proteostasis. In addition to growth signals, mTORC1 senses and responds to a wide array of stresses, including energetic/metabolic stress, genotoxic stress, oxidative stress, osmotic stress, ER stress, proteotoxic stress, and psychological stress. Whereas growth signals unanimously stimulate mTORC1, stresses exert complex impacts on mTORC1, most of which are repressive. mTORC1 suppression, as (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  2
    To aggregate or not to aggregate – Is it a matter of the ribosome?Sebastian Iben - 2023 - Bioessays 45 (7):2200230.
    Neurodegenerative syndromes present as proteinopathies – does ribosomal infidelity contribute to the protein toxicity that is the driving force for neuronal cell loss? Intracellular and extracellular protein aggregates overwhelm the clearance capacity of cells and tissues. Proteins aggregate when hydrophobic residues are exposed. Hydrophobic residues become exposed when proteins are misfolded. Protein misfolding can originate from translational errors at the ribosome. Indeed, the most error‐prone process in gene expression is translation at the ribosome. Recent evidence indicates that manipulating the ribosomal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  33
    The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity.Snehal N. Chaudhari & Edward T. Kipreos - 2018 - Bioessays 40 (8):1800005.
    Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long‐lived C. elegans vhl‐1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  11
    Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment.Xu Wang, Dongryeol Ryu, Riekelt H. Houtkooper & Johan Auwerx - 2015 - Bioessays 37 (10):1045-1053.
    Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  39
    Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis.Vishnu Balaji, Wojciech Pokrzywa & Thorsten Hoppe - 2018 - Bioessays 40 (5):1700223.
    The insulin/insulin‐like growth factor‐1 (IGF‐1) signaling (IIS) pathway is a pivotal genetic program regulating cell growth, tissue development, metabolic physiology, and longevity of multicellular organisms. IIS integrates a fine‐tuned cascade of signaling events induced by insulin/IGF‐1, which is precisely controlled by post‐translational modifications. The ubiquitin/proteasome‐system (UPS) influences the functionality of IIS through inducible ubiquitylation pathways that regulate internalization of the insulin/IGF‐1 receptor, the stability of downstream insulin/IGF‐1 signaling targets, and activity of nuclear receptors for control of gene expression. An age‐related (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  2
    AUXIN RESPONSE FACTOR protein accumulation and function.Hongwei Jing & Lucia C. Strader - 2023 - Bioessays 45 (11):2300018.
    Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo‐cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  6
    Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond.Eirini Lionaki, Ilias Gkikas & Nektarios Tavernarakis - 2023 - Bioessays 45 (3):2200160.
    Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark