Results for 'phosphoinositides'

23 found
Order:
  1.  12
    Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box.Christopher H. Choy, Bong-Kwan Han & Roberto J. Botelho - 2017 - Bioessays 39 (12):1700121.
    Phosphoinositides modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  21
    Changing phosphoinositides “on the fly”: how trafficking vesicles avoid an identity crisis.Roberto J. Botelho - 2009 - Bioessays 31 (10):1127-1136.
    Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  13
    Pairing phosphoinositides with calcium ions in endolysosomal dynamics.Dongbiao Shen, Xiang Wang & Haoxing Xu - 2011 - Bioessays 33 (6):448-457.
    The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane‐bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta‐organellar Ca2+, which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca2+ channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca2+ (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  4.  15
    Why do plants have phosphoinositides?Gary G. Coté & Richard C. Crain - 1994 - Bioessays 16 (1):39-46.
    Phosphoinositides are inositol‐containing phospholipids whose hydrolysis is a key step in the rapid responses of animal cells to extracellular signals. Whether they play similar roles in plant cells has not been established, and some have suggested alternative roles as direct modulators of specific proteins. Nonetheless, evidence is accumulating that phosphoinositide hydrolysis mediates transduction of some signal in plants. The evidence is strongest for a role in triggering the shedding of flagella by the unicellular alga Chlamydomonas reinhardtii under acid stress. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  17
    A new paradigm in phosphoinositide signaling? (Comment on DOI 10.1002/bies.201100195).Eva Yw So & Alice L.‐F. Mui - 2012 - Bioessays 34 (8):633-633.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  3
    Nanoscale organization of phosphoinositide signaling in the plasma membrane?Aaron J. Marshall - 2023 - Bioessays 45 (3):2300001.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  17
    BioEssays in phosphoinositides: A special collection.Roberto J. Botelho - 2014 - Bioessays 36 (2):123-124.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  21
    Reversible Ser/Thr SHIP phosphorylation: A new paradigm in phosphoinositide signalling?William'S. Elong Edimo, Veerle Janssens, Etienne Waelkens & Christophe Erneux - 2012 - Bioessays 34 (8):634-642.
    Phosphoinositide (PI) phosphatases such as the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  15
    Leukocytes on the move with phosphoinositide 3-kinase and its downstream effectors.Erik Procko & Shaun R. McColl - 2005 - Bioessays 27 (2):153-163.
    Cell signalling mediators derived from membrane phospholipids are frequent participants in biological processes. The family of phosphoinositide 3-kinases (PI3Ks) phosphorylate the membrane lipid phosphatidylinositol, generating second messengers that direct diverse responses. These PI3K products are fundamental for leukocyte migration or chemotaxis, a pivotal event during the immune response. This system is therefore of significant biomedical interest. This review focuses on the biochemistry and signalling pathways of PI3K, with particular emphasis on chemokine (chemotactic cytokine)-directed responses. The key objectives of chemotaxis are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  23
    Reversible Ser/Thr SHIP phosphorylation: A new paradigm in phosphoinositide signalling? [REVIEW]William'S. Elong Edimo, Veerle Janssens, Etienne Waelkens & Christophe Erneux - 2012 - Bioessays 34 (8):634-642.
    Phosphoinositide (PI) phosphatases such as the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11.  3
    Animal cell shape changes and gene expression.Avri Ben-Ze've - 1991 - Bioessays 13 (5):207-212.
    Cell shape and cell contacts are determined by transmembrane receptor‐mediated associations of the cytoskeleton with specific extracellular matrix proteins and with ligands on the surface of adjacent cells. The cytoplasmic domains of these microfilament‐membrane associations at the adherens junction sites, also Iocalize a variety of regulatory molecules involved in signal transduction and gene regulation. The stimulation of cells with soluble polypeptide factors leads to rapid changes in cell shape and microfilament component organization. In addition, this stimulation also activates the phosphoinositide (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  7
    Phosphatidylinositol 3‐kinase.Rosana Kapeller & Lewis C. Cantley - 1994 - Bioessays 16 (8):565-576.
    Currently, a central question in biology is how signals from the cell surface modulate intracellular processes. In recent years phosphoinositides have been shown to play a key role in signal transduction. Two phosphoinositide pathways have been characterized, to date. In the canonical phosphoinositide turnover pathway, activation of phosphatidylinositol‐specific phospholipase C results in the hydrolysis of phosphatidylinositol 4,5‐bisphospate and the generation of two second messengers, inositol 1,4,5‐trisphosphate and diacylglycerol. The 3‐phosphoinositide pathway involves protein‐tyrosine kinase‐mediated recruitment and activation of phosphatidylinositol 3‐kinase, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  28
    How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity?Jingwei Xie, Christophe Erneux & Isabelle Pirson - 2013 - Bioessays 35 (8):733-743.
    The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5‐position. Here we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  10
    Disabled‐2: A modular scaffold protein with multifaceted functions in signaling.Carla V. Finkielstein & Daniel G. S. Capelluto - 2016 - Bioessays 38 (S1):45-55.
    Disabled‐2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell–cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab‐2 controls the extent of platelet (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  39
    Phosphatidylinositol‐4‐phosphate: The Golgi and beyond.Maria A. De Matteis, Cathal Wilson & Giovanni D'Angelo - 2013 - Bioessays 35 (7):612-622.
    Initially identified as a key phosphoinositide that controls membrane trafficking at the Golgi complex, phosphatidylinositol‐4‐phosphate (PI4P) has emerged as a key molecule in the regulation of a diverse array of cellular functions. In this review we will discuss selected examples of the findings that in the last few years have significantly increased our awareness of the regulation and roles of PI4P in the Golgi complex and beyond. We will also highlight the role of PI4P in infection and cancer. We believe (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  16.  10
    Control of phosphatidylinositol‐3‐kinase signaling by nanoscale membrane compartmentalization.Rebecca Cabral-Dias & Costin N. Antonescu - 2023 - Bioessays 45 (3):2200196.
    Phosphatidylinositol‐3‐kinases (PI3Ks) are lipid kinases that produce 3‐phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3‐phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K‐derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  6
    Transcription‐independent functions of p53 in DNA repair pathway selection.Yu-Hsiu Wang & Michael P. Sheetz - 2023 - Bioessays 45 (1):2200122.
    Recently discovered transcription‐independent features of p53 involve the choice of DNA damage repair pathway after PARylation, and p53's complex formation with phosphoinositide lipids, PI(4,5)P2. PARylation‐mediated rapid accumulation of p53 at DNA damage sites is linked to the recruitment of downstream repair factors and tumor suppression. This links p53's capability to sense damaged DNA in vitro and its relevant functions in cells. Further, PI(4,5)P2 rapidly accumulates at damage sites like p53 and complexes with p53, while it is required for ATR recruitment. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  28
    Phosphatidylinositol 3,5‐bisphosphate: Low abundance, high significance.Amber J. McCartney, Yanling Zhang & Lois S. Weisman - 2014 - Bioessays 36 (1):52-64.
    Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2, and mutations that disrupt complex function and/or (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  25
    Phosphatidylinositol 3‐phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling.Kay O. Schink, Camilla Raiborg & Harald Stenmark - 2013 - Bioessays 35 (10):900-912.
    Phosphatidylinositol 3‐phosphate (PtdIns3P) is generated on the cytosolic leaflet of cellular membranes, primarily by phosphorylation of phosphatidylinositol by class II and class III phosphatidylinositol 3‐kinases. The bulk of this lipid is found on the limiting and intraluminal membranes of endosomes, but it can also be detected in domains of phagosomes, autophagosome precursors, cytokinetic bridges, the plasma membrane and the nucleus. PtdIns3P controls cellular functions through recruitment of specific protein effectors, many of which contain FYVE or PX domains. Cellular processes known (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  25
    Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors.Ashley A. George, Sara Hayden, Gail R. Stanton & Susan E. Brockerhoff - 2016 - Bioessays 38 (S1):119-135.
    Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1‐deficient zebrafish mutant, nrca14. We found that loss of SynJ1 leads to specific accumulation of late endosomes and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  14
    Phosphatidylinositol 5‐phosphate: A nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics.Julien Viaud, Frédéric Boal, Hélène Tronchère, Frédérique Gaits-Iacovoni & Bernard Payrastre - 2014 - Bioessays 36 (3):260-272.
    Phosphatidylinositol 5‐phosphate (PtdIns5P), the least characterized among the three phosphatidylinositol monophosphates, is emerging as a bioactive lipid involved in the control of several cellular functions. Similar to PtdIns3P, it is present in low amounts in mammalian cells, and can be detected at the plasma membrane and endomembranes as well as in the nucleus. Changes in PtdIns5P levels are observed in mammalian cells following specific stimuli or stresses, and in human diseases. Recently, the contribution of several enzymes such as PIKfyve, myotubularins, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  22.  13
    Phosphatidylinositol‐3,4,5‐trisphosphate: Tool of choice for class I PI 3‐kinases.Rachel Schnur Salamon & Jonathan M. Backer - 2013 - Bioessays 35 (7):602-611.
    Class I PI 3‐kinases signal by producing the signaling lipid phosphatidylinositol(3,4,5) trisphosphate, which in turn acts by recruiting downstream effectors that contain specific lipid‐binding domains. The class I PI 3‐kinases comprise four distinct catalytic subunits linked to one of seven different regulatory subunits. All the class I PI 3‐kinases produce the same signaling lipid, PIP3, and the different isoforms have overlapping expression patterns and are coupled to overlapping sets of upstream activators. Nonetheless, studies in cultured cells and in animals have (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  9
    Plentiful PtdIns5P from scanty PtdIns(3,5)P 2 or from ample PtdIns? PIKfyve‐dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). [REVIEW]Assia Shisheva, Diego Sbrissa & Ognian Ikonomov - 2015 - Bioessays 37 (3):267-277.
    Recently, we have presented data supporting the notion that PIKfyve not only produces the majority of constitutive phosphatidylinositol 5‐phosphate (PtdIns5P) in mammalian cells but that it does so through direct synthesis from PtdIns. Another group, albeit obtaining similar data, suggests an alternative pathway whereby the low‐abundance PtdIns(3,5)P2 undergoes hydrolysis by unidentified 3‐phosphatases, thereby serving as a precursor for most of PtdIns5P. Here, we review the experimental evidence supporting constitutive synthesis of PtdIns5P from PtdIns by PIKfyve. We further emphasize that the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark