Reversible Ser/Thr SHIP phosphorylation: A new paradigm in phosphoinositide signalling?

Bioessays 34 (8):634-642 (2012)
  Copy   BIBTEX

Abstract

Phosphoinositide (PI) phosphatases such as the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.Editor's suggested further reading in BioEssays: Pairing phosphoinositides with calcium ions in endolysosomal dynamics Abstract.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,610

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-10-28

Downloads
21 (#732,808)

6 months
4 (#776,340)

Historical graph of downloads
How can I increase my downloads?