Results for 'kinetochores'

28 found
Order:
  1.  60
    The 'kinetochore maintenance loop'—The mark of regulation?William R. A. Brown & Zheng-yao Xu - 2009 - Bioessays 31 (2):228-236.
    Kinetochores can form and be maintained on DNA sequences that are normally non‐centromeric. The existence of these so‐called neo‐centromeres has posed the problem as to the nature of the epigenetic mechanisms that maintain the centromere. Here we highlight results that indicate that the amount of CENP‐A at human centromeres is tightly regulated. It is also known that kinetochore assembly requires sister chromatid cohesion at mitosis. We therefore suggest that separation or stretching between the sister chromatids at metaphase reciprocally determines (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  9
    Chromosomes, kinetochores and the microtubule connection.B. R. Brinkley - 1991 - Bioessays 13 (12):675-681.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  4
    Swap and stop – Kinetochores play error correction with microtubules.Harinath Doodhi & Tomoyuki U. Tanaka - 2022 - Bioessays 44 (5):2100246.
    Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  11
    Looping in on Ndc80 – How does a protein loop at the kinetochore control chromosome segregation?Jakob Nilsson - 2012 - Bioessays 34 (12):1070-1077.
    Segregation of chromosomes during mitosis requires the interaction of dynamic microtubules with the kinetochore, a large protein structure established on the centromere region of sister chromatids. The core microtubule‐binding activity of the kinetochore resides in the KMN network, an outer kinetochore complex. As part of the KMN network, the Ndc80 complex, which is composed of Ndc80, Nuf2, Spc24, and Spc25, is able to bind directly to microtubules and has the ability to track with depolymerizing microtubules to produce chromosome movement. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  17
    Molecular Codes Through Complex Formation in a Model of the Human Inner Kinetochore.Dennis Görlich, Gabi Escuela, Gerd Gruenert, Peter Dittrich & Bashar Ibrahim - 2014 - Biosemiotics 7 (2):223-247.
    We apply molecular code theory to a rule-based model of the human inner kinetochore and study how complex formation in general can give rise to molecular codes. We analyze 105 reaction networks generated from the rule-based inner kinetochore model in two variants: with and without dissociation of complexes. Interestingly, we found codes only when some but not all complexes are allowed to dissociate. We show that this is due to the fact that in the kinetochore model proteins can only bind (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  22
    A meiotic mystery: How sister kinetochores avoid being pulled in opposite directions during the first division.Kim Nasmyth - 2015 - Bioessays 37 (6):657-665.
    We now take for granted that despite the disproportionate contribution of females to initial growth of their progeny, there is little or no asymmetry in the contribution of males and females to the eventual character of their shared offspring. In fact, this key insight was only established towards the end of the eighteenth century by Joseph Koelreuter's pioneering plant breeding experiments. If males and females supply equal amounts of hereditary material, then the latter must double each time an embryo is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  12
    From the Nuclear Pore to the Fibrous Corona: A MAD Journey to Preserve Genome Stability.Sofia Cunha-Silva & Carlos Conde - 2020 - Bioessays 42 (11):2000132.
    The relationship between kinetochores and nuclear pore complexes (NPCs) is intimate but poorly understood. Several NPC components and associated proteins are relocated to mitotic kinetochores to assist in different activities that ensure faithful chromosome segregation. Such is the case of the Mad1‐c‐Mad2 complex, the catalytic core of the spindle assembly checkpoint (SAC), a surveillance pathway that delays anaphase until all kinetochores are attached to spindle microtubules. Mad1‐c‐Mad2 is recruited to discrete domains of unattached kinetochores from where (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  24
    Multitasking Ska in Chromosome Segregation: Its Distinct Pools Might Specify Various Functions.Qian Zhang, Yujue Chen, Lu Yang & Hong Liu - 2018 - Bioessays 40 (3):1700176.
    The human spindle and kinetochore associated complex is required for proper mitotic progression. Extensive studies have demonstrated its important functions in both stable kinetochore-microtubule interactions and spindle checkpoint silencing. We suggest a model to explain how various Ska functions might be fulfilled by distinct pools of Ska at kinetochores. The Ndc80-loop pool of Ska is recruited by the Ndc80 loop, or together with some of its flanking sequences, and the recruitment is also dependent on Cdk1-mediated Ska3 phosphorylation. This pool (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  4
    Variations on a nucleosome theme: The structural basis of centromere function.Olga Moreno-Moreno, Mònica Torras-Llort & Fernando Azorín - 2017 - Bioessays 39 (4):1600241.
    The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere‐specific histone H3 variant, CENP‐A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP‐A nucleosomes have flexible DNA ends due to the short αN helix of CENP‐A. The higher (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  3
    Mitotic poleward flux: Finding balance between microtubule dynamics and sliding.Marin Barisic & Girish Rajendraprasad - 2021 - Bioessays 43 (8):2100079.
    Continuous poleward motion of microtubules in metazoan mitotic spindles has been fascinating generations of cell biologists over the last several decades. In human cells, this so‐called poleward flux was recently shown to be driven by the coordinated action of four mitotic kinesins. The sliding activities of kinesin‐5/EG5 and kinesin‐12/KIF15 are sequentially supported by kinesin‐7/CENP‐E at kinetochores and kinesin‐4/KIF4A on chromosome arms, with the individual contributions peaking during prometaphase and metaphase, respectively. Although recent data elucidate the molecular mechanism underlying this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  10
    Meiotic defects in human oocytes: Potential causes and clinical implications.Tianyu Wu, Hao Gu, Yuxi Luo, Lei Wang & Qing Sang - 2022 - Bioessays 44 (12):2200135.
    Meiotic defects cause abnormal chromosome segregation leading to aneuploidy in mammalian oocytes. Chromosome segregation is particularly error‐prone in human oocytes, but the mechanisms behind such errors remain unclear. To explain the frequent chromosome segregation errors, recent investigations have identified multiple meiotic defects and explained how these defects occur in female meiosis. In particular, we review the causes of cohesin exhaustion, leaky spindle assembly checkpoint (SAC), inherently unstable meiotic spindle, fragmented kinetochores or centromeres, abnormal aurora kinases (AURK), and clinical genetic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  15
    MAPping the Ndc80 loop in cancer: A possible link between Ndc80/Hec1 overproduction and cancer formation.Ngang Heok Tang & Takashi Toda - 2015 - Bioessays 37 (3):248-256.
    SummaryMis‐regulation (e.g. overproduction) of the human Ndc80/Hec1 outer kinetochore protein has been associated with aneuploidy and tumourigenesis, but the genetic basis and underlying mechanisms of this phenomenon remain poorly understood. Recent studies have identified the ubiquitous Ndc80 internal loop as a protein‐protein interaction platform. Binding partners include the Ska complex, the replication licensing factor Cdt1, the Dam1 complex, TACC‐TOG microtubule‐associated proteins (MAPs) and kinesin motors. We review the field and propose that the overproduction of Ndc80 may unfavourably absorb these interactors (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  14
    Structural analysis of a yeast centromere.Kerry Bloom, Alison Hill & Elaine Yeh - 1986 - Bioessays 4 (3):100-104.
    The most striking region of structural differentiation of a eukaryotic chromosome is the kinetochore. This chromosomal domain plays an integral role in the stability and propagation of genetic material to the progeny cells during cell division. The DNA component of this structure, which we refer to as the centromere, has been localized to a small region of 220–250 base pairs within the chromosomes from the yeast Saccharomyces cerevisiae. The centromere DNA (CEN) is organized in a unique structure in the cell (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  8
    Heterochromatin tells CENP‐A where to go.Mickaël Durand-Dubief & Karl Ekwall - 2008 - Bioessays 30 (6):526-529.
    The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP‐A. The epigenetic mechanisms that maintain CENP‐A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP‐A to naked centromeric DNA templates. In a recent report published in Science,1 such (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  3
    Meiosis I Kinase Regulators: Conserved Orchestrators of Reductional Chromosome Segregation.Stefan Galander & Adèle L. Marston - 2020 - Bioessays 42 (10):2000018.
    Research over the last two decades has identified a group of meiosis‐specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister (...) face towards the same pole (mono‐orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  14
    Topoisomerase II may be linked to the reduction of chromosome number in meiosis.Leocadia V. Paliulis & R. Bruce Nicklas - 2003 - Bioessays 25 (4):309-312.
    A reduction of chromosome number in meiosis is essential for genome transmission in diploid organisms. Reduction depends on a change in kinetochore configuration.1 A recent study2 connects changes in kinetochores with other changes in chromosome structure and raises the intriguing possibility that topoisomerase II, the DNA untangling enzyme, is involved. BioEssays 25:309–312, 2003. © 2003 Wiley Periodicals, Inc.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  20
    Chromosomes take an active role in spindle assembly.Jennifer C. Waters & Edward D. Salmon - 1995 - Bioessays 17 (11):911-914.
    The assembly of a bipolar spindle is essential for the accurate segregation of replicated chromosomes during cell division. Do chromosomes rely solely on other cellular components to regulate the assembly of the bipolar spindle or are they masters of their own fate? In the Zhang and Nicklas(1) study reviewed here, micromanipulation techniques and video microscopy were used to demonstrate the different roles that chromosome arms, kinetochores and centrosomes play in bipolar spindle assembly.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18.  8
    Is there a unique form of chromatin at the Saccharomyces cerevisiae centromeres?Munira A. Basrai & Philip Hieter - 1995 - Bioessays 17 (8):669-672.
    Chromosome transmission in S. cerevisiae requires the activities of many structural and regulatory proteins required for the replication, repair, recombination and segregation of chromosomal DNA, and co‐ordination of the chromosome cycle with progression through the cell cycle. An important structural domain on each chromosome is the kinetochore (centromere DNA and associated proteins), which provides the site of attachment of chromosomes to the spindle microtubules. Stoler et al.(1) have recently reported the cloning of an essential gene CSE4, mutations in which cause (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  5
    An emerging role of transcription in chromosome segregation: Ongoing centromeric transcription maintains centromeric cohesion.Yujue Chen, Qian Zhang & Hong Liu - 2022 - Bioessays 44 (1):2100201.
    Non‐coding centromeres, which dictate kinetochore formation for proper chromosome segregation, are extremely divergent in DNA sequences across species but are under active transcription carried out by RNA polymerase (RNAP) II. The RNAP II‐mediated centromeric transcription has been shown to facilitate the deposition of the centromere protein A (CENP‐A) to centromeres, establishing a conserved and critical role of centromeric transcription in centromere maintenance. Our recent work revealed another role of centromeric transcription in chromosome segregation: maintaining centromeric cohesion during mitosis. Interestingly, this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  10
    How can zygotes segregate entire parental genomes into distinct blastomeres? The zygote metaphase revisited.Aspasia Destouni & Joris R. Vermeesch - 2017 - Bioessays 39 (4):1600226.
    Zygote cytokinesis produces two symmetric blastomeres, which contain one copy of each parental genome. Contrary to this dogma, we recently discovered that mammalian zygotes can spontaneously segregate entire parental genomes into different blastomeres and coined this novel form of genome segregation heterogoneic division. The molecular mechanisms underlying the emergence of blastomeres with different parental genomes during the first mitotic cycle remain to be elucidated. Here, we speculate on which parental genome asymmetries could provide a mechanistic foundation for these remarkable zygote (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  13
    The role of chromosome ends during meiosis in Caenorhabditis elegans.Chantal Wicky & Ann M. Rose - 1996 - Bioessays 18 (6):447-452.
    Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  9
    How meiotic cells deal with non‐exchange chromosomes.Klaus Werner Wolf - 1994 - Bioessays 16 (2):107-114.
    The chromosomes which segregate in anaphase I of meiosis are usually physically bound together through chiasmata. This association is necessary for proper segregation, since univalents sort independently from one another in the first meiotic division and this frequently leads to genetically unbalanced offspring. There are, however, a number of species where genetic exchanges in the form of meiotic cross‐overs, the prerequisite of the formation of chiasmata, are routinely missing in one sex or between specific chromosomes. These species nevertheless manage to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  6
    Highway to hell‐thy meiotic divisions: Chromosome passenger complex functions driven by microtubules.Kim S. McKim - 2022 - Bioessays 44 (1):2100202.
    The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin‐microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC‐microtubule dependent functions are considered in the context of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  8
    Minichromosome maintenance proteins in eukaryotic chromosome segregation.Gunjan Mehta, Kaustuv Sanyal, Suman Abhishek, Eerappa Rajakumara & Santanu K. Ghosh - 2022 - Bioessays 44 (1):2100218.
    Minichromosome maintenance (Mcm) proteins are well‐known for their functions in DNA replication. However, their roles in chromosome segregation are yet to be reviewed in detail. Following the discovery in 1984, a group of Mcm proteins, known as the ARS‐nonspecific group consisting of Mcm13, Mcm16‐19, and Mcm21‐22, were characterized as bonafide kinetochore proteins and were shown to play significant roles in the kinetochore assembly and high‐fidelity chromosome segregation. This review focuses on the structure, function, and evolution of this group of Mcm (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  11
    Frontier questions about sister chromatid separation in anaphase.Mitsuhiro Yanagida - 1995 - Bioessays 17 (6):519-526.
    Sister chromatid separation in anaphase is an important event in the cell's transmission of genetic information to a descendent. It has been investigated from different aspects: cell cycle regulation, spindle and chromosome dynamics within the three‐dimensional cell architecture, transmission fidelity control and cellular signaling. Integrated studies directed toward unified understanding are possible using multidisciplinary methods with model organisms. Ubiquitin‐dependent proteolysis, protein dephosphorylation, an unknown function by the TPR repeat proteins, chromosome transport by microtubule‐based motors and DNA topological change by DNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  28
    Cell cycle checkpoints: Arresting progress in mitosis.Gary J. Gorbsky - 1997 - Bioessays 19 (3):193-197.
    Cell cycle arrest in M phase can be induced by the failure of a single chromosome to attach properly to the mitotic spindle. The same cell cycle checkpoint mediates M phase arrest when cells are treated with drugs that either disrupt or hyperstabilize spindle microtubules. Study of yeast mutants that fail to arrest in the presence of microtubule disruptors identified a set of genes important in this checkpoint pathway. Two recent papers report the cloning of human and Xenopus homologues of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  11
    Chromosome motion in mitosis.Gary J. Gorbsky - 1992 - Bioessays 14 (2):73-80.
    The nature of the forces that move chromosomes in mitosis is beginning to be revealed. The kinetochore, a specialized structure situated at the primary constriction of the chromosome, appears to translocate in both directions along the microtubules of the mitotic spindle. One or more members of the newly described families of microtubule motor molecules may power these movements. Microtubules of the mitotic spindle undergo rapid cycles of assembly and disassembly. These microtubule dynamics may contribute toward generating force and regulating direction (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  16
    Shugoshin: a centromeric guardian senses tension.Sarah E. Goulding & William C. Earnshaw - 2005 - Bioessays 27 (6):588-591.
    To ensure accurate chromosome segregation during mitosis, the spindle checkpoint monitors chromosome alignment on the mitotic spindle. Indjeian and colleagues have investigated the precise role of the shugoshin 1 protein (Sgo1p) in this process in budding yeast.1 The Sgo proteins were originally identified as highly conserved proteins that protect cohesion at centromeres during the first meiotic division. Together with other recent findings,2 the study highlighted here has identified Sgo1 as a component that informs the mitotic spindle checkpoint when spindle tension (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark