Results for 'RNA maturation'

1000+ found
Order:
  1.  16
    Discontinuous RNA synthesis through trans‐splicing.Richard Braun - 1986 - Bioessays 5 (5):223-227.
    In eukaryotic cells intron sequences are usually spliced out with a high degree of precision from heterogenous nuclear RNA (hnRNA) to give functional mRNA with exons in their right order. Provided with the right substrates, cell extracts can achieve the same. With exotic substrates, on the other hand, the same extracts can cut exons from one RNA and join them to exons from another RNA, a process termed trans‐splicing. In vivo, RNA trans‐splicing could lead to faulty, but also to novel (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  7
    The RNA‐binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity.Julie Deschênes-Furry, Nora Perrone-Bizzozero & Bernard J. Jasmin - 2006 - Bioessays 28 (8):822-833.
    AbstractmRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU‐rich elements (ARE) contained within the 3′ untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  5
    What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia?Samoil Sekulovski & Simon Trowitzsch - 2023 - Bioessays 45 (2):2200130.
    Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  18
    The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism.Florian Weighardt, Giuseppe Biamonti & Silvano Riva - 1996 - Bioessays 18 (9):747-756.
    In eukaryotic cells, messenger RNAs are formed by extensive posttranscriptional processing of primary transcripts, assembled with a large number of proteins and processing factors in ribonucleoprotein complexes. The protein moiety of these complexes mainly constitutes a class of about 20 major polypeptides called heterogeneous nuclear ribonucleoproteins or hnRNPs. The function and the mechanism of action of hnRNPs is still not fully understood, but the identification of RNA binding domains and RNA binding specificities, and the development of new functional assays, has (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  4
    Spacers and processing of large ribosomal RNAs in Escherichia coli and mouse cells.D. Schlessinger, R. I. Bolla, R. Sirdeshmukh & J. R. Thomas - 1985 - Bioessays 3 (1):14-18.
    The formation of mature large rRNAs from larger primary transcripts is very different in bacterial and mammalian cells. In both, cotranscription can help to assure the coordinated production of various rRNA species. However, in bacteria, processing is ordered, initiated by cleavages at double‐stranded stems which enclose the mature sequences; several cleavages are required to produce each mature terminus; and the final steps occur in polysomes, apparently linked to continued protein synthesis. In mouse cells, in contrast, cleavages generate nearly all mature (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. The double solution of the theory of relativity.Julius Järnåker - 1970 - [Uppsala,: Almqvist & Wiksell.
     
    Export citation  
     
    Bookmark  
  7.  7
    ʻAql-i surkh: sharḥ va taʼvīl-i dāstānʹhā-yi ramzī-i Suhravardī.Taqī Pūrnāmdārīyān - 2011 - Tihrān: Intishārāt-i Sukhan. Edited by Yaḥyá ibn Ḥabash Suhrawardī.
  8. Cad fúinne, mar sin?: what of us, then?Colm Ó Tórna - 2019 - [Dublin]: Foilsithe ag Teangscéal.
     
    Export citation  
     
    Bookmark  
  9. Quo Vanis, a Chreidmhigh?Colm Ó Tórna - 2015 - Binn Eadair, Baile Átha Cliath: Coiscéim.
     
    Export citation  
     
    Bookmark  
  10.  6
    The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation.Katherine L. B. Borden - 2024 - Bioessays 46 (1):2300145.
    Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron‐containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E‐dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  25
    The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways.Konstantin Licht & Michael F. Jantsch - 2017 - Bioessays 39 (11):1700129.
    The RNA editing enzyme ADAR1 seemingly has more functions besides RNA editing. Mouse models lacking ADAR1 and sensors of foreign RNA show that RNA editing by ADAR1 plays a crucial role in the innate immune response. Still, RNA editing alone cannot explain all observed phenotypes. Thus, additional roles for ADAR1 must exist. Binding of ADAR1 to RNA is independent of its RNA editing function. Thus, ADAR1 may compete with other RNA-binding proteins. A very recent manuscript elaborates on this and reports (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  11
    Soma to germline inheritance of extrachromosomal genetic information via a LINE‐1 reverse transcriptase‐based mechanism.Corrado Spadafora - 2016 - Bioessays 38 (8):726-733.
    Mature spermatozoa are permeable to foreign DNA and RNA molecules. Here I propose a model, whereby extrachromosomal genetic information, mostly encoded in the form of RNA in somatic cells, can cross the Weismann barrier and reach epididymal spermatozoa. LINE‐1 retrotransposon‐derived reverse transcriptase (RT) can play key roles in the process by expanding the RNA‐encoded information. Retrotransposon‐encoded RT is stored in mature gametes, is highly expressed in early embryos and undifferentiated cells, and becomes downregulated in differentiated cells. In turn, RT plays (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  13.  17
    The agotrons: Gene regulators or Argonaute protectors?Lotte V. W. Stagsted, Iben Daugaard & Thomas B. Hansen - 2017 - Bioessays 39 (4):1600239.
    Over the last decades, it has become evident that highly complex networks of regulators govern post‐transcriptional regulation of gene expression. A novel class of Argonaute (Ago)‐associated RNA molecules, the agotrons, was recently shown to function in a Drosha‐ and Dicer‐independent manner, hence bypassing the maturation steps required for canonical microRNA (miRNA) biogenesis. Agotrons are found in most mammals and associate with Ago as ∼100 nucleotide (nt) long RNA species. Here, we speculate on the functional and biological relevance of agotrons: (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14.  7
    The CCA‐adding enzyme: A central scrutinizer in tRNA quality control.Heike Betat & Mario Mörl - 2015 - Bioessays 37 (9):975-982.
    tRNA nucleotidyltransferase adds the invariant CCA‐terminus to the tRNA 3′‐end, a central step in tRNA maturation. This CCA‐adding enzyme is a specialized RNA polymerase that synthesizes the CCA sequence at high fidelity in all kingdoms of life. Recently, an additional function of this enzyme was identified, where it generates a specific degradation tag on structurally unstable tRNAs. This tag consists of an additional repeat of the CCA triplet, leading to a 3′‐terminal CCACCA sequence. In order to explain how the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  8
    Alternative splicing switches: Important players in cell differentiation.Ana Fiszbein & Alberto R. Kornblihtt - 2017 - Bioessays 39 (6):1600157.
    Alternative splicing (AS) greatly expands the coding capacities of genomes by allowing the generation of multiple mature mRNAs from a limited number of genes. Although the massive switch in AS profiles that often accompanies variations in gene expression patterns occurring during cell differentiation has been characterized for a variety of models, their causes and mechanisms remain largely unknown. Here, we integrate foundational and recent studies indicating the AS switches that govern the processes of cell fate determination. We include some distinct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  19
    A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line.Adelheid Soubry, Cathrine Hoyo, Randy L. Jirtle & Susan K. Murphy - 2014 - Bioessays 36 (4):359-371.
    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle‐related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17.  11
    Translational control during early development.Joel D. Richter - 1991 - Bioessays 13 (4):179-183.
    Early development in many animals is programmed by maternally inherited messenger RNAs. Many of these mRNAs are translationally dormant in immature oocytes, but are recruited onto polysomes during meiotic maturation, fertilization, or early embryogenesis. In contrast, other mRNAs that are translated in oocytes are released from polysomes during these later stages of development. Recent studies have begun to define the cis and trans elements that regulate both translational repression and translational induction of maternal mRNA. The inhibition of translation of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  11
    What the papers say: Compartmentalized transcription and the establishment of cell type during sporulation in Bacillus subtilis.James W. Gober - 1992 - Bioessays 14 (2):125-128.
    An early step in sporulation of the bacterium Bacillus subtilis, is the formation of two compartments in the developing sporangium: the mother cell and the forespore. These compartments differ in their programs of gene expression and developmental fate. The establishment of cell type within this simple developmental program, is accomplished by the compartmentalization of sigma subunits of RNA polymerase. The localization of these sigma factors results in compartment‐specific gene expression. Recent experiments have elucidated some of the early steps in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  6
    Budding of enveloped viruses from the plasma membrane.Tamarra L. Cadd, Ulrica Skoging & Peter Liljeström - 1997 - Bioessays 19 (11):993-1000.
    Many enveloped viruses are released from infected cells by maturing and budding at the plasma membrane. During this process, viral core components are incorporated into membrane vesicles that contain viral transmembrane proteins, termed ‘spike’ proteins. For many years these spike proteins, which are required for infectivity, were believed to be incorporated into virions via a direct interaction between their cytoplasmic domains and viral core components. More recent evidence shows that, while such direct interactions drive budding of alphaviruses, this may not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Temporal changes in ovarian gonadotropin-releasing hormone mRNA levels by gonadotropins in the rat.Sun Kyeong Yu - 1994 - Mol Cells 4:39-44.
    Temporal Changes in Ovarian Gonadotropin-Releasing Hormone mRNA Levels by Gonadotropins in the Rat Sung Ho Lee, Eun-Seob Song, Sun Kyeong Yu, Changmee Kim, Dae Kee Lee, Wan Sung Choi l and Kyungjin Kim* Department of Molecular Biofogy and SRC for Cell Differentiation, Seoul National University, Seoul 150-742, Korea; IDepartment of Anatomy, College of Medicine, Gyeongsanf; National University, Chinju 660-280, Korea (Recei·. cd on December 29, 1993) The present study examines whether gonadotropins are involved in the regulation of ovarian GnRH gene (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  7
    Analyses critiques de ľexpression génétique.Par Walter Wahli - 1982 - Dialectica 36 (1):71-81.
    ResumeLa question du filtrage de ľinformation génétique dans la cellule est fondamentale. Comment la cellule sélectionne‐t‐elle, avant de les transformer en RNA puis en protéines, certaines parties bien déterminées de son information génétique? Il ne sera probablement pas possible de donner une explication cohérente du développement embryonnaire, de la différentiation cellulaire et du maintien de ľétat différencie tant que nous n'aurons pas repondu de manière satis‐faisante à cette question.Dans un premier chapitre, quelques notions de base concernant ľexpression génétique sont préséntées. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  22.  23
    Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress.Frédéric Lessard, Léa Brakier-Gingras & Gerardo Ferbeyre - 2019 - Bioessays 41 (3):1800183.
    Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre‐ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome‐free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  12
    Structure–function relationships in eukaryotic nuclei.Dean A. Jackson - 1991 - Bioessays 13 (1):1-10.
    It may be that eukaryotic nuclei contain a collection of operationally independent units (genes), each controlled through its interactions with soluble protein factors which diffuse at random throughout the nucleoplasmic space. Alternatively, nuclei might be organized in such a sophisticated fashion that specific genes, occupy distinct sites and that spatially ordered RNA synthesis, processing and transport delivers mature RNAs to predestined sites in the cytoplasm.Different fields of research support each of these extreme views. Molecular biologists inspecting the precise details of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  17
    Assembly and intracellular transport of snRNP particles.Janet Andersen & Gary W. Zieva - 1991 - Bioessays 13 (2):57-64.
    The assembly of the major small nuclear ribonucleoprotein (snRNP)d̊ particles begins in the cytoplasm where large pools of common core proteins are preassembled in several RNA‐free intermediate particles. Newly synthesized snRNAs transiently enter the cytoplasm and complex with core particles to form pre‐snRNP particles. Subsequently, the cap structure at the 5/end of the snRNA is hypermethylated. The Resulting trimethylguanosine (TMG) cap is an integral part of the nuclear localization signal for snRNP particles and the pre‐snRNP particles are rapidly transported into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  8
    Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects.Dmitri Graifer & Galina Karpova - 2020 - Bioessays 42 (12):2000124.
    The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF‐kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in understanding the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  25
    Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm.Miles F. Wilkinson & Ann-Bin Shyu - 2001 - Bioessays 23 (9):775-787.
    The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre‐messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript‐ and cell‐type‐specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA‐ and DNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  8
    Microbial systems engineering: First successes and the way ahead.Sven Dietz & Sven Panke - 2010 - Bioessays 32 (4):356-362.
    The first promising results from “streamlined,” minimal genomes tend to support the notion that these are a useful tool in biological systems engineering. However, compared with the speed with which genomic microbial sequencing has provided us with a wealth of data to study biological functions, it is a slow process. So far only a few projects have emerged whose synthetic ambition even remotely matches our analytic capabilities. Here, we survey current technologies converging into a future ability to engineer large‐scale biological (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  22
    What do you mean by transcription rate?José E. Pérez-Ortín, Daniel A. Medina, Sebastián Chávez & Joaquín Moreno - 2013 - Bioessays 35 (12):1056-1062.
    mRNA synthesis in all organisms is performed by RNA polymerases, which work as nanomachines on DNA templates. The rate at which their product is made is an important parameter in gene expression. Transcription rate encompasses two related, yet different, concepts: the nascent transcription rate, which measures the in situ mRNA production by RNA polymerase, and the rate of synthesis of mature mRNA, which measures the contribution of transcription to the mRNA concentration. Both parameters are useful for molecular biologists, but they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  14
    Intron retention in mRNA: No longer nonsense.Justin J.-L. Wong, Amy Y. M. Au, William Ritchie & John E. J. Rasko - 2016 - Bioessays 38 (1):41-49.
    Until recently, retention of introns in mature mRNAs has been regarded as a consequence of mis‐splicing. Intron‐retaining transcripts are thought to be non‐functional because they are readily degraded by nonsense‐mediated decay. However, recent advances in next‐generation sequencing technologies have enabled the detection of numerous transcripts that retain introns. As we review herein, intron‐retaining mRNAs play an essential conserved role in normal physiology and an emergent role in diverse diseases. Intron retention should no longer be overlooked as a key mechanism that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  28
    RNAs, Phase Separation, and Membrane‐Less Organelles: Are Post‐Transcriptional Modifications Modulating Organelle Dynamics?Aleksej Drino & Matthias R. Schaefer - 2018 - Bioessays 40 (12):1800085.
    Membranous organelles allow sub‐compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane‐less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid–liquid phase separation (LLPS), and is primarily governed by the interactions of multi‐domain proteins or proteins harboring intrinsically disordered regions as well as RNA‐binding domains. Although the presence of RNAs affects the formation and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  23
    Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease.Sophie Juliane Veigl - 2021 - History and Philosophy of the Life Sciences 43 (1):1-25.
    The discovery of RNA interference in 1998 has made a lasting impact on biological research. Identifying the regulatory role of small RNAs changed the modes of molecular biological inquiry as well as biologists' understanding of genetic regulation. This article examines the early years of small RNA biology's success story. I query which factors had to come together so that small RNA research came into life in the blink of an eye. I primarily look at scientific repertoires as facilitators of rapid (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  32.  45
    Are RNA Viruses Vestiges of an RNA World?Susie Fisher - 2010 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 41 (1):121-141.
    This paper follows the circuitous path of theories concerning the origins of viruses from the early years of the twentieth century until the present, considering RNA viruses in particular. I focus on three periods during which new understandings of the nature of viruses guided the construction and reconstruction of origin hypotheses. During the first part of the twentieth century, viruses were mostly viewed from within the framework of bacteriology and the discussion of origin centered on the “degenerative” or the “retrograde (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  33.  11
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  43
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  26
    Noncoding RNA‐guided recruitment of transcription factors: A prevalent but undocumented mechanism?Nara Lee & Joan A. Steitz - 2015 - Bioessays 37 (9):936-941.
    High‐fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  22
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  37.  64
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  29
    Does RNA editing compensate for Alu invasion of the primate genome?Erez Y. Levanon & Eli Eisenberg - 2015 - Bioessays 37 (2):175-181.
    One of the distinctive features of the primate genome is the Alu element, a repetitive short interspersed element, over a million highly similar copies of which account for >10% of the genome. A direct consequence of this feature is that primates' transcriptome is highly enriched in long stable dsRNA structures, the preferred target of adenosine deaminases acting on RNAs (ADARs), which are the enzymes catalyzing A‐to‐I RNA editing. Indeed, A‐to‐I editing by ADARs is extremely abundant in primates: over a hundred (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39. RNA’s Role in the Origins of Life: An Agentic ‘Manager’, or Recipient of ‘Off-loaded’ Constraints?John E. Stewart - 2021 - Biosemiotics 14 (3):643-650.
    In his Target Article, Terrence Deacon develops simple models that assist in understanding the role of RNA in the origins of life. However, his models fail to adequately represent an important evolutionary dynamic. Central to this dynamic is the selection that impinges on RNA molecules in the context of their association with proto-metabolisms. This selection shapes the role of RNA in the emergence of life. When this evolutionary dynamic is appropriately taken into account, it predicts a role for RNA that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  31
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):548-552.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  41.  18
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42. KM Maturity Factors Affecting High Performance in Universities.Samy S. Abu Naser, Mazen J. Al Shobaki & Youssef M. Abu Amuna - 2016 - International Journal of Information Technology and Electrical Engineering 5 (5):46-56.
    This paper aims to measure Knowledge Management Maturity (KMM) in the universities to determine the impact of knowledge management on high performance. This study was applied on Al-Quds Open University in Gaza strip, Palestine. Asian productivity organization model was applied to measure KMM. Second dimension which assess high performance was developed by the authors. The controlled sample was (306). Several statistical tools were used for data analysis and hypotheses testing, including reliability Correlation using Cronbach’s alpha, “ANOVA”, Simple Linear Regression and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  18
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. We describe (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  17
    When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference.Yumeng Wang & Han Liang - 2018 - Bioessays 40 (2):1700188.
    RNA editing is a major post-transcriptional mechanism that changes specific nucleotides at the RNA level. The most common RNA editing type in humans is adenosine to inosine editing, which is mediated by ADAR enzymes. RNA editing events can not only change amino acids in proteins, but also affect the functions of non-coding RNAs such as miRNAs. Recent studies have characterized thousands of miRNA RNA editing events across different cancer types. Importantly, individual cases of miRNA editing have been reported to play (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  4
    Branched RNA.Mary Edmonds - 1987 - Bioessays 6 (5):212-216.
    The only RNA molecules known to be branched are circular structures with tails known as lariats that arise during nuclear pre‐mRNA splicing. Lariats accumulate within a large multicomponent particle called a spliceosome that forms upon the addition of unspliced mRNA to nuclear extracts. Recently an RNA molecule has been observed to catalyze branch formation. In this case a single intron of a yeast mitochondrial pre‐mRNA participates in a self‐splicing reaction that results in the accumulation of branched lariats that are processed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  11
    RNA versatility governs tRNA function.Claus-D. Kuhn - 2016 - Bioessays 38 (5):465-473.
    tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA‐adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  13
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  24
    Noncoding RNAs and chronic inflammation: Micro‐managing the fire within.Margaret Alexander & Ryan M. O'Connell - 2015 - Bioessays 37 (9):1005-1015.
    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49.  8
    RNA structure: Merging chemistry and genomics for a holistic perspective.Miles Kubota, Dalen Chan & Robert C. Spitale - 2015 - Bioessays 37 (10):1129-1138.
    The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  9
    Bacterial RNA polymerase — the ultimate metabolic sensor?Andrew A. Travers - 1988 - Bioessays 8 (6):190-193.
    The RNA polymerase of Enterobacteria senses the physiological state of the cell by interaction with signal molecules such as ppGpp and responds by altering the rate of initiation of rRNA and tRNA species so as to limit or enhance the capacity for further growth.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000