Results for 'RNA degradation'

1000+ found
Order:
  1.  5
    Eukaryotic messenger RNA degradation.Nico van Belzen, Formijn van Hemert & Olivier H. J. Destree - 1988 - Bioessays 8 (1):44-44.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  8
    When machines get stuck—obstructed RNA polymerase II: displacement, degradation or suicide.Vincent van den Boom, Nicolaas G. J. Jaspers & Wim Vermeulen - 2002 - Bioessays 24 (9):780-784.
    The severe hereditary progeroid disorder Cockayne syndrome is a consequence of a defective transcription‐coupled repair (TCR) pathway. This special mode of DNA repair aids a RNA polymerase that is stalled by a DNA lesion in the template and ensures efficient DNA repair to permit resumption of transcription and prevent cell death. Although some key players in TCR, such as the Cockayne syndrome A (CSA) and B (CSB) proteins have been identified, the exact molecular mechanism still remains illusive. A recent report (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  7
    Unusual SMG suspects recruit degradation enzymes in nonsense‐mediated mRNA decay.Agathe Gilbert & Cosmin Saveanu - 2022 - Bioessays 44 (5):2100296.
    Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense‐mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  11
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  8
    More than a bystander: RNAs specify multifaceted behaviors of liquid‐liquid phase‐separated biomolecular condensates.Hui Zheng & Hong Zhang - 2024 - Bioessays 46 (3):2300203.
    Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid‐liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid‐like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  16
    Nonsense‐mediated RNA decay: A molecular system micromanaging individual gene activities and suppressing genomic noise.Claudio R. Alonso - 2005 - Bioessays 27 (5):463-466.
    Nonsense‐mediated RNA decay (NMD) is an evolutionary conserved system of RNA surveillance that detects and degrades RNA transcripts containing nonsense mutations. Given that these mutations arise at a relatively low frequency, are there any as yet unknown substrates of NMD in a wild‐type cell? With this question in mind, Mendell et al.1 have used a microarray assay to identify those human genes under NMD regulation. Their results show that, in human cells, NMD regulates hundreds of physiologic transcripts and not just (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  21
    Viral suppression of RNA silencing: 2b wins the Golden Fleece by defeating Argonaute.Virginia Ruiz-Ferrer & Olivier Voinnet - 2007 - Bioessays 29 (4):319-323.
    In plants, virus‐derived double‐stranded RNA is processed into small interfering (si)RNAs by RNAse III‐type enzymes. siRNAs are believed to guide an RNA‐induced silencing complex (RISC) to promote sequence‐specific degradation (or ‘slicing’) of homologous viral transcripts. This process, called RNA silencing, likely involves Argonaute (AGO) proteins that are known components of plant and animal RISCs. Plant viruses commonly counteract the silencing immune response by producing suppressor proteins, but the molecular basis of their action has remained largely unclear. A recent study (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  10
    Multifaceted targeted protein degradation systems for different cellular compartments.Cornelia E. Zorca, Armaan Fallahi, Sophie Luo & Mohamed A. Eldeeb - 2022 - Bioessays 44 (6):2200008.
    Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  6
    Regulation of messenger RNA stability in eukaryotic cells.David J. Shapiro, John E. Blume & David A. Nielsen - 1987 - Bioessays 6 (5):221-226.
    Regulation of the cytoplasmic stability of mRNAs has recetly been identified as a major control mechanism which governs mRNA levels in a variety of eukaryotic systems. In this review we discuss what is known about several experimental systems that exhibit regulated mRNA stability, describe the mechanisms that cells may use to achieve control of mRNA degradation, and suggest areas of future investigation likely to provide new insights into this process.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  15
    Processing of snoRNAs as a new source of regulatory non‐coding RNAs.Marina Falaleeva & Stefan Stamm - 2013 - Bioessays 35 (1):46-54.
    Recent experimental evidence suggests that most of the genome is transcribed into non‐coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non‐coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High‐throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA‐derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  11.  7
    ʻAql-i surkh: sharḥ va taʼvīl-i dāstānʹhā-yi ramzī-i Suhravardī.Taqī Pūrnāmdārīyān - 2011 - Tihrān: Intishārāt-i Sukhan. Edited by Yaḥyá ibn Ḥabash Suhrawardī.
  12. The double solution of the theory of relativity.Julius Järnåker - 1970 - [Uppsala,: Almqvist & Wiksell.
     
    Export citation  
     
    Bookmark  
  13.  8
    Libby tata arcel.Degrading Treatment Of Women - 2007 - In Robin May Schott & Kirsten Klercke (eds.), Philosophy on the border. Lancaster: Gazelle Drake Academic [distributor].
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  14. Cad fúinne, mar sin?: what of us, then?Colm Ó Tórna - 2019 - [Dublin]: Foilsithe ag Teangscéal.
     
    Export citation  
     
    Bookmark  
  15. Quo Vanis, a Chreidmhigh?Colm Ó Tórna - 2015 - Binn Eadair, Baile Átha Cliath: Coiscéim.
     
    Export citation  
     
    Bookmark  
  16.  14
    Deubiquitinating Enzymes in Model Systems and Therapy: Redundancy and Compensation Have Implications.Sarah Zachariah & Douglas A. Gray - 2019 - Bioessays 41 (11):1900112.
    The multiplicity of deubiquitinating enzymes (DUBs) encoded by vertebrate genomes is partly attributable to whole genome duplication events that occurred early in chordate evolution. By surveying the literature for the largest family of DUBs (the ubiquitin-specific proteases), extensive functional redundancy for duplicated genes has been confirmed as opposed to singletons. Dramatically conflicting results have been reported for loss of function studies conducted through RNA interference as opposed to inactivating mutations, but the contradictory findings can be reconciled by a recently proposed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  25
    The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways.Konstantin Licht & Michael F. Jantsch - 2017 - Bioessays 39 (11):1700129.
    The RNA editing enzyme ADAR1 seemingly has more functions besides RNA editing. Mouse models lacking ADAR1 and sensors of foreign RNA show that RNA editing by ADAR1 plays a crucial role in the innate immune response. Still, RNA editing alone cannot explain all observed phenotypes. Thus, additional roles for ADAR1 must exist. Binding of ADAR1 to RNA is independent of its RNA editing function. Thus, ADAR1 may compete with other RNA-binding proteins. A very recent manuscript elaborates on this and reports (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  11
    ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. [REVIEW]Cornelia Habacher & Rafal Ciosk - 2017 - Bioessays 39 (9):1700051.
    The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19. Structure and biological function of ribonucleic acid from Tobacco Mosaic Virus.Alfred Gierer - 1957 - Nature 179:1297-1299.
    Within the sedimentation diagram of infective RNA preparations isolated from Tobacco Mosaic Virus, undegraded molecules form a sharp peak with a molecular weight corresponding to the total RNA content of the virus particle. Degradation kinetics by ribonuclease is of the linear, single-target type, indicating that the RNA is single-stranded. The intact RNA of a virus particle thus forms one big single-stranded molecule. Quantitative evaluation of the effect degradation by RNA-ase on the infectivity of the RNA shows that the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  20.  11
    Why Is AUG the Start Codon?Jacques Demongeot & Hervé Seligmann - 2020 - Bioessays 42 (6):1900201.
    The rational design of theoretical minimal RNA rings predetermines AUG as the universal start codon. This design maximizes coded amino acid diversity over minimal sequence length, defining in silico theoretical minimal RNA rings, candidate ancestral genes. RNA rings code for 21 amino acids and a stop codon after three consecutive translation rounds, and form a degradation‐delaying stem‐loop hairpin. Twenty‐five RNA rings match these constraints, ten start with the universal initiation codon AUG. No first codon bias exists among remaining RNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  7
    The CCA‐adding enzyme: A central scrutinizer in tRNA quality control.Heike Betat & Mario Mörl - 2015 - Bioessays 37 (9):975-982.
    tRNA nucleotidyltransferase adds the invariant CCA‐terminus to the tRNA 3′‐end, a central step in tRNA maturation. This CCA‐adding enzyme is a specialized RNA polymerase that synthesizes the CCA sequence at high fidelity in all kingdoms of life. Recently, an additional function of this enzyme was identified, where it generates a specific degradation tag on structurally unstable tRNAs. This tag consists of an additional repeat of the CCA triplet, leading to a 3′‐terminal CCACCA sequence. In order to explain how the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  13
    MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post‐transcriptional gene regulation.Anneke Brümmer & Jean Hausser - 2014 - Bioessays 36 (6):617-626.
    It is well established that microRNAs (miRNAs) induce mRNA degradation by binding to 3′ untranslated regions (UTRs). The functionality of sites in the coding domain sequence (CDS), on the other hand, remains under discussion. Such sites have limited impact on target mRNA abundance and recent work suggests that miRNAs bind in the CDS to inhibit translation. What then could be the regulatory benefits of translation inhibition through CDS targeting compared to mRNA degradation following 3′ UTR binding? We propose (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  17
    The agotrons: Gene regulators or Argonaute protectors?Lotte V. W. Stagsted, Iben Daugaard & Thomas B. Hansen - 2017 - Bioessays 39 (4):1600239.
    Over the last decades, it has become evident that highly complex networks of regulators govern post‐transcriptional regulation of gene expression. A novel class of Argonaute (Ago)‐associated RNA molecules, the agotrons, was recently shown to function in a Drosha‐ and Dicer‐independent manner, hence bypassing the maturation steps required for canonical microRNA (miRNA) biogenesis. Agotrons are found in most mammals and associate with Ago as ∼100 nucleotide (nt) long RNA species. Here, we speculate on the functional and biological relevance of agotrons: (i) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  49
    A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977.Miguel García-Sancho - 2010 - Journal of the History of Biology 43 (2):265-323.
    Fred Sanger, the inventor of the first protein, RNA and DNA sequencing methods, has traditionally been seen as a technical scientist, engaged in laboratory bench work and not interested at all in intellectual debates in biology. In his autobiography and commentaries by fellow researchers, he is portrayed as having a trajectory exclusively dependent on technological progress. The scarce historical scholarship on Sanger partially challenges these accounts by highlighting the importance of professional contacts, institutional and disciplinary moves in his career, spanning (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  25.  18
    The role of secondary structures in the functioning of 3′ untranslated regions of mRNA.Mariya Zhukova, Paul Schedl & Yulii V. Shidlovskii - 2024 - Bioessays 46 (3):2300099.
    Abstract3′ untranslated regions (3′ UTRs) of mRNAs have many functions, including mRNA processing and transport, translational regulation, and mRNA degradation and stability. These different functions require cis‐elements in 3′ UTRs that can be either sequence motifs or RNA structures. Here we review the role of secondary structures in the functioning of 3′ UTRs and discuss some of the trans‐acting factors that interact with these secondary structures in eukaryotic organisms. We propose potential participation of 3′‐UTR secondary structures in cytoplasmic polyadenylation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  7
    Iron regulatory proteins 1 and 2.Beric R. Henderson - 1996 - Bioessays 18 (9):739-746.
    Iron uptake and storage in mammalian cells is at least partly regulated at a posttranscriptional level by the iron regulatory proteins (IRP‐1 and IRP‐2). These cytoplasmic regulators share 79% similarity in protein sequence and bind tightly to conserved mRNA stem‐loops, named iron‐responsive elements (IREs). The IRP:IRE interaction underlies the regulation of translation and stability of several mRNAs central to iron metabolism. The question of why the cell requires two such closely related regulatory proteins may be resloved as we learn more (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  31
    Suicidal genetically engineered microorganisms for bioremediation: Need and perspectives.Debarati Paul, Gunjan Pandey & Rakesh K. Jain - 2005 - Bioessays 27 (5):563-573.
    In the past few decades, increased awareness of environmental pollution has led to the exploitation of microbial metabolic potential in the construction of several genetically engineered microorganisms (GEMs) for bioremediation purposes. At the same time, environmental concerns and regulatory constraints have limited the in situ application of GEMs, the ultimate objective behind their development. In order to address the anticipated risks due to the uncontrolled survival/dispersal of GEMs or recombinant plasmids into the environment, some attempts have been made to construct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  17
    Global analysis of siRNA‐mediated transcriptional gene silencing.Harsh H. Kavi, Weiwu Xie, Harvey R. Fernandez & James A. Birchler - 2005 - Bioessays 27 (12):1209-1212.
    The RNAi machinery is not only involved with post‐transcriptional degradation of messenger RNAs, but also used for targeting of chromatin changes associated with transcriptional silencing. Two recent papers determine the global patterns of gene expression and chromatin modifications produced by the RNAi machinery in fission yeast.(9, 10) The major sites include the outer centromere repeats, the mating‐type locus and subtelomeric regions. By comparison, studies of Arabidopsis heterochromatin also implicate transposons as a major target for silencing. Analyses of siRNA libraries (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  13
    Growth and development of the mammalian oocyte.Roger Gosden, Jennifer Krapez & David Briggs - 1997 - Bioessays 19 (10):875-882.
    The oocyte is not only the rarest and the largest cell in the body, but it also has one of the most remarkable life histories. Formed in the fetal ovary and suspended at diplotene of meiosis, it may wait for years before beginning to grow, and not until this process is complete can it resume meiosis and undergo fertilisation. Major changes in the number, morphology and distribution of cytoplasmic organelles occur during growth, and a molecular program for embryogenesis is formed. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  14
    Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress.Leena Latonen - 2011 - Bioessays 33 (5):386-395.
    The nucleolus may represent a key stress response organelle in the nucleus following proteotoxic stress by serving as a platform for protein aggregates. Aggregation of proteins often results from insufficient protein degradation by the ubiquitin‐proteasome system (UPS), occurring in inclusion diseases, upon treatment by proteasome inhibitors (PIs) or due to various forms of stress. As the nucleolar inclusions resemble cytoplasmic aggresomes in gathering ubiquitin and numerous UPS components and targets, including cancer‐related transcription factors and cell cycle regulators (e.g. p53 (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  25
    Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm.Miles F. Wilkinson & Ann-Bin Shyu - 2001 - Bioessays 23 (9):775-787.
    The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre‐messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript‐ and cell‐type‐specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA‐ and DNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32.  2
    Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes.Eduardo A. Groisman & Jeongjoon Choi - 2023 - Bioessays 45 (10):2300062.
    Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat‐stable nucleoid structuring (H‐NS) protein binds to AT‐rich horizontally acquired genes. This ability had previously been ascribed to both anti‐silencing proteins outcompeting H‐NS for binding to AT‐rich DNA and RNA polymerase initiating transcription from alternative promoters. However, we now know that pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli break down H‐NS when this silencer is not bound to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  23
    A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977. [REVIEW]Miguel García-Sancho - 2010 - Journal of the History of Biology 43 (2):265 - 323.
    Fred Sanger, the inventor of the first protein, RNA and DNA sequencing methods, has traditionally been seen as a technical scientist, engaged in laboratory bench work and not interested at all in intellectual debates in biology. In his autobiography and commentaries by fellow researchers, he is portrayed as having a trajectory exclusively dependent on technological progress. The scarce historical scholarship on Sanger partially challenges these accounts by highlighting the importance of professional contacts, institutional and disciplinary moves in his career, spanning (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  34.  14
    Intron retention in mRNA: No longer nonsense.Justin J.-L. Wong, Amy Y. M. Au, William Ritchie & John E. J. Rasko - 2016 - Bioessays 38 (1):41-49.
    Until recently, retention of introns in mature mRNAs has been regarded as a consequence of mis‐splicing. Intron‐retaining transcripts are thought to be non‐functional because they are readily degraded by nonsense‐mediated decay. However, recent advances in next‐generation sequencing technologies have enabled the detection of numerous transcripts that retain introns. As we review herein, intron‐retaining mRNAs play an essential conserved role in normal physiology and an emergent role in diverse diseases. Intron retention should no longer be overlooked as a key mechanism that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  44
    Are RNA Viruses Vestiges of an RNA World?Susie Fisher - 2010 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 41 (1):121-141.
    This paper follows the circuitous path of theories concerning the origins of viruses from the early years of the twentieth century until the present, considering RNA viruses in particular. I focus on three periods during which new understandings of the nature of viruses guided the construction and reconstruction of origin hypotheses. During the first part of the twentieth century, viruses were mostly viewed from within the framework of bacteriology and the discussion of origin centered on the “degenerative” or the “retrograde (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  36.  64
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  37.  23
    Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease.Sophie Juliane Veigl - 2021 - History and Philosophy of the Life Sciences 43 (1):1-25.
    The discovery of RNA interference in 1998 has made a lasting impact on biological research. Identifying the regulatory role of small RNAs changed the modes of molecular biological inquiry as well as biologists' understanding of genetic regulation. This article examines the early years of small RNA biology's success story. I query which factors had to come together so that small RNA research came into life in the blink of an eye. I primarily look at scientific repertoires as facilitators of rapid (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  38.  28
    RNAs, Phase Separation, and Membrane‐Less Organelles: Are Post‐Transcriptional Modifications Modulating Organelle Dynamics?Aleksej Drino & Matthias R. Schaefer - 2018 - Bioessays 40 (12):1800085.
    Membranous organelles allow sub‐compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane‐less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid–liquid phase separation (LLPS), and is primarily governed by the interactions of multi‐domain proteins or proteins harboring intrinsically disordered regions as well as RNA‐binding domains. Although the presence of RNAs affects the formation and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  18
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. We describe (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  24
    Noncoding RNAs and chronic inflammation: Micro‐managing the fire within.Margaret Alexander & Ryan M. O'Connell - 2015 - Bioessays 37 (9):1005-1015.
    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  43
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  31
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):548-552.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  43.  16
    RNA processing in prokaryotic cells.David Apirion & Andras Miczak - 1993 - Bioessays 15 (2):113-120.
    RNA processing in Escherichia coli and some of its phages is reviewed here, with primary emphasis on rRNA and tRNA processing. Three enzymes, RNase III, RNase E and RNase P are responsible for most of the primary endonucleolytic RNA processing events. The first two are proteins, while RNase P is a ribozyme. These three enzymes have unique functions and in their absence, the cleavage events they catalyze are not performed. On the other hand a relatively large number of exonucleases participate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  18
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  25
    Noncoding RNA‐guided recruitment of transcription factors: A prevalent but undocumented mechanism?Nara Lee & Joan A. Steitz - 2015 - Bioessays 37 (9):936-941.
    High‐fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  28
    Does RNA editing compensate for Alu invasion of the primate genome?Erez Y. Levanon & Eli Eisenberg - 2015 - Bioessays 37 (2):175-181.
    One of the distinctive features of the primate genome is the Alu element, a repetitive short interspersed element, over a million highly similar copies of which account for >10% of the genome. A direct consequence of this feature is that primates' transcriptome is highly enriched in long stable dsRNA structures, the preferred target of adenosine deaminases acting on RNAs (ADARs), which are the enzymes catalyzing A‐to‐I RNA editing. Indeed, A‐to‐I editing by ADARs is extremely abundant in primates: over a hundred (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  22
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48. RNA’s Role in the Origins of Life: An Agentic ‘Manager’, or Recipient of ‘Off-loaded’ Constraints?John E. Stewart - 2021 - Biosemiotics 14 (3):643-650.
    In his Target Article, Terrence Deacon develops simple models that assist in understanding the role of RNA in the origins of life. However, his models fail to adequately represent an important evolutionary dynamic. Central to this dynamic is the selection that impinges on RNA molecules in the context of their association with proto-metabolisms. This selection shapes the role of RNA in the emergence of life. When this evolutionary dynamic is appropriately taken into account, it predicts a role for RNA that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  7
    RNA structure: Merging chemistry and genomics for a holistic perspective.Miles Kubota, Dalen Chan & Robert C. Spitale - 2015 - Bioessays 37 (10):1129-1138.
    The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50. Environmental degradation, reparations, and the moral significance of history.Simon Caney - 2006 - Journal of Social Philosophy 37 (3):464–482.
1 — 50 / 1000