15 found
Order:
  1.  23
    Coding true arithmetic in the Medvedev and Muchnik degrees.Paul Shafer - 2011 - Journal of Symbolic Logic 76 (1):267 - 288.
    We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  31
    Characterizing the Join-Irreducible Medvedev Degrees.Paul Shafer - 2011 - Notre Dame Journal of Formal Logic 52 (1):21-38.
    We characterize the join-irreducible Medvedev degrees as the degrees of complements of Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that there are Medvedev degrees above the second-least degree that do not bound any join-irreducible degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally, we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem posed by Bianchini and Sorbi.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  11
    Ordinal analysis of partial combinatory algebras.Paul Shafer & Sebastiaan A. Terwijn - 2021 - Journal of Symbolic Logic 86 (3):1154-1188.
    For every partial combinatory algebra, we define a hierarchy of extensionality relations using ordinals. We investigate the closure ordinals of pca’s, i.e., the smallest ordinals where these relations become equal. We show that the closure ordinal of Kleene’s first model is ${\omega _1^{\textit {CK}}}$ and that the closure ordinal of Kleene’s second model is $\omega _1$. We calculate the exact complexities of the extensionality relations in Kleene’s first model, showing that they exhaust the hyperarithmetical hierarchy. We also discuss embeddings of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  23
    Comparing the strength of diagonally nonrecursive functions in the absence of induction.François G. Dorais, Jeffry L. Hirst & Paul Shafer - 2015 - Journal of Symbolic Logic 80 (4):1211-1235.
    We prove that the statement “there is aksuch that for everyfthere is ak-bounded diagonally nonrecursive function relative tof” does not imply weak König’s lemma over${\rm{RC}}{{\rm{A}}_0} + {\rm{B\Sigma }}_2^0$. This answers a question posed by Simpson. A recursion-theoretic consequence is that the classic fact that everyk-bounded diagonally nonrecursive function computes a 2-bounded diagonally nonrecursive function may fail in the absence of${\rm{I\Sigma }}_2^0$.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  25
    Randomness and Semimeasures.Laurent Bienvenu, Rupert Hölzl, Christopher P. Porter & Paul Shafer - 2017 - Notre Dame Journal of Formal Logic 58 (3):301-328.
    A semimeasure is a generalization of a probability measure obtained by relaxing the additivity requirement to superadditivity. We introduce and study several randomness notions for left-c.e. semimeasures, a natural class of effectively approximable semimeasures induced by Turing functionals. Among the randomness notions we consider, the generalization of weak 2-randomness to left-c.e. semimeasures is the most compelling, as it best reflects Martin-Löf randomness with respect to a computable measure. Additionally, we analyze a question of Shen, a positive answer to which would (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  24
    Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  19
    (Extra)Ordinary Equivalences with the Ascending/Descending Sequence Principle.Marta Fiori-Carones, Alberto Marcone, Paul Shafer & Giovanni Soldà - 2024 - Journal of Symbolic Logic 89 (1):262-307.
    We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  13
    On Cohesive Powers of Linear Orders.Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexandra A. Soskova & Stefan V. Vatev - 2023 - Journal of Symbolic Logic 88 (3):947-1004.
    Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$\omega $,$\zeta $, and$\eta $denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$\omega $. If$\mathcal {L}$is a computable copy of$\omega $that is computably isomorphic to the usual presentation of$\omega $, then every cohesive power of$\mathcal {L}$has order-type$\omega + (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  13
    Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
  10.  43
    Universality, optimality, and randomness deficiency.Rupert Hölzl & Paul Shafer - 2015 - Annals of Pure and Applied Logic 166 (10):1049-1069.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  11.  22
    Randomness notions and reverse mathematics.André Nies & Paul Shafer - 2020 - Journal of Symbolic Logic 85 (1):271-299.
    We investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  17
    Comparing the degrees of enumerability and the closed Medvedev degrees.Paul Shafer & Andrea Sorbi - 2019 - Archive for Mathematical Logic 58 (5-6):527-542.
    We compare the degrees of enumerability and the closed Medvedev degrees and find that many situations occur. There are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are nonzero degrees of enumerability that do not bound nonzero closed degrees, and there are degrees that are nontrivially both degrees of enumerability and closed degrees. We also show that the compact degrees of enumerability exactly correspond to the cototal enumeration degrees.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  15
    Honest elementary degrees and degrees of relative provability without the cupping property.Paul Shafer - 2017 - Annals of Pure and Applied Logic 168 (5):1017-1031.
  14.  48
    Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document}. [REVIEW]Paul Shafer - 2012 - Archive for Mathematical Logic 51 (3-4):407-423.
    We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  5
    Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document}. [REVIEW]Paul Shafer - 2012 - Archive for Mathematical Logic 51 (3-4):407-423.
    We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation