5 found
Order:
Disambiguations
Rumen Dimitrov [4]Rumen D. Dimitrov [2]
  1.  17
    Quasimaximality and principal filters isomorphism between.Rumen Dimitrov - 2004 - Archive for Mathematical Logic 43 (3):415-424.
    Let I be a quasimaximal subset of a computable basis of the fully efective vector space V ∞ . We give a necessary and sufficient condition for the existence of an isomorphism between the principal filter respectivelly. We construct both quasimaximal sets that satisfy and quasimaximal sets that do not satisfy this condition. With the latter we obtain a negative answer to Question 5.4 posed by Downey and Remmel in [3].
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  6
    On Cohesive Powers of Linear Orders.Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexandra A. Soskova & Stefan V. Vatev - 2023 - Journal of Symbolic Logic 88 (3):947-1004.
    Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$\omega $,$\zeta $, and$\eta $denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$\omega $. If$\mathcal {L}$is a computable copy of$\omega $that is computably isomorphic to the usual presentation of$\omega $, then every cohesive power of$\mathcal {L}$has order-type$\omega + (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  2
    Dependence relations in computably rigid computable vector spaces.Rumen D. Dimitrov, Valentina S. Harizanov & Andrei S. Morozov - 2005 - Annals of Pure and Applied Logic 132 (1):97-108.
    We construct a computable vector space with the trivial computable automorphism group, but with the dependence relations as complicated as possible, measured by their Turing degrees. As a corollary, we answer a question asked by A.S. Morozov in [Rigid constructive modules, Algebra and Logic, 28 570–583 ; 379–387 ].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  4. Nomenkulturata.Rumen Dimitrov - 1991 - Universitetsko Izd-Vo "Kliment Okhridski".
    No categories
     
    Export citation  
     
    Bookmark  
  5.  12
    A class of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma {3}^{0}}$$\end{document} modular lattices embeddable as principal filters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast }(V{\infty })}$$\end{document}. [REVIEW]Rumen Dimitrov - 2008 - Archive for Mathematical Logic 47 (2):111-132.
    Let I0 be a a computable basis of the fully effective vector space V∞ over the computable field F. Let I be a quasimaximal subset of I0 that is the intersection of n maximal subsets of the same 1-degree up to *. We prove that the principal filter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}^{\ast}(V,\uparrow )}$$\end{document} of V = cl(I) is isomorphic to the lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}(n, \overline{F})}$$\end{document} of subspaces (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations