# Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document} [Book Review]

Archive for Mathematical Logic 51 (3-4):407-423 (2012)

# Abstract

We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.

## PhilArchive

Upload a copy of this work     Papers currently archived: 92,953

Setup an account with your affiliations in order to access resources via your University's proxy server

2013-10-27