Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document} [Book Review]

Archive for Mathematical Logic 51 (3-4):407-423 (2012)
  Copy   BIBTEX


We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.



    Upload a copy of this work     Papers currently archived: 92,953

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Aristotle, Menger, Mises: An essay in the metaphysics of economics.Barry Smith - 1990 - History of Political Economy, Annual Supplement 22:263-288.
Menger's Trace in Fuzzy Logic.Enric Trillas - 1996 - Theoria 11 (3):89-96.
Menger's Covering Property and Groupwise Density.Boaz Tsaban & Lyubomyr Zdomskyy - 2006 - Journal of Symbolic Logic 71 (3):1053 - 1056.
A normal form theorem for lω 1p, with applications.Douglas N. Hoover - 1982 - Journal of Symbolic Logic 47 (3):605 - 624.


Added to PP

6 (#1,482,519)

6 months
4 (#862,463)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Add more citations

References found in this work

Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.

Add more references