Menger’s theorem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^11\tt{-CA}0}}$$\end{document} [Book Review]

Archive for Mathematical Logic 51 (3-4):407-423 (2012)
  Copy   BIBTEX


We prove Menger’s theorem for countable graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document}. Our proof in fact proves a stronger statement, which we call extended Menger’s theorem, that is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Pi^1_1\tt{-CA}_0}}$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tt{RCA}_0}}$$\end{document}.



    Upload a copy of this work     Papers currently archived: 93,745

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.


Added to PP

49 (#103,641)

6 months
9 (#1,260,759)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Partial impredicativity in reverse mathematics.Henry Towsner - 2013 - Journal of Symbolic Logic 78 (2):459-488.

Add more citations