Results for 'Eukarya'

9 found
Order:
  1.  9
    Code Biology: A New Science of Life.Marcello Barbieri - 2015 - Cham: Imprint: Springer.
    The genetic code appeared on Earth at the origin of life, and the codes of culture arrived almost four billion years later. For a long time it has been assumed that these are the only codes that exist in Nature, and if that were true we would have to conclude that codes are extraordinary exceptions that appeared only at the beginning and at the end of the history of life. In reality, various other organic codes have been discovered in the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  2.  36
    The discovery of archaea: from observed anomaly to consequential restructuring of the phylogenetic tree.Michael Fry - 2024 - History and Philosophy of the Life Sciences 46 (2):1-38.
    Observational and experimental discoveries of new factual entities such as objects, systems, or processes, are major contributors to some advances in the life sciences. Yet, whereas discovery of theories was extensively deliberated by philosophers of science, very little philosophical attention was paid to the discovery of factual entities. This paper examines historical and philosophical aspects of the experimental discovery by Carl Woese of archaea, prokaryotes that comprise one of the three principal domains of the phylogenetic tree. Borrowing Kuhn’s terminology, this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3.  26
    Archaea‐First and the Co‐Evolutionary Diversification of Domains of Life.James T. Staley & Gustavo Caetano-Anollés - 2018 - Bioessays 40 (8):1800036.
    The origins and evolution of the Archaea, Bacteria, and Eukarya remain controversial. Phylogenomic‐wide studies of molecular features that are evolutionarily conserved, such as protein structural domains, suggest Archaea is the first domain of life to diversify from a stem line of descent. This line embodies the last universal common ancestor of cellular life. Here, we propose that ancestors of Euryarchaeota co‐evolved with those of Bacteria prior to the diversification of Eukarya. This co‐evolutionary scenario is supported by comparative genomic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Understanding the emergence of microbial consciousness and SOM.Jumpal Shashi Kiran Reddy & Contzen Pereira - 2017 - Journal of Integrative Neuroscience 16 (16):S27-S36.
    Microorganisms demonstrate conscious-like intelligent behaviour, and this form of consciousness may have emerged from a quantum mediated mechanism as observed in cytoskeletal structures like the microtubules present in nerve cells whichapparently have the architecture to quantum compute. This paper hypothesises the emergence of proto-consciousness in primitivecytoskeletal systems found in the microbial kingdoms of archaea, bacteria and eukarya. To explain this, we make use of the Subject–Object Model (SOM) of consciousness which evaluates the rise of the degree of consciousness to (...)
     
    Export citation  
     
    Bookmark  
  5.  9
    Phylogenomics of type II DNA topoisomerases.Danièle Gadelle, Jonathan Filée, Cyril Buhler & Patrick Forterre - 2003 - Bioessays 25 (3):232-242.
    Type II DNA topoisomerases (Topo II) are essential enzymes implicated in key nuclear processes. The recent discovery of a novel kind of Topo II (DNA topoisomerase VI) in Archaea led to a division of these enzymes into two non‐homologous families, (Topo IIA and Topo IIB) and to the identification of the eukaryotic protein that initiates meiotic recombination, Spo11. In the present report, we have updated the distribution of all Topo II in the three domains of life by a phylogenomic approach. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  22
    Evolution of prokaryotes: A Kuhnian scientific revolution.Janine F. Guespin-Michel - 1997 - Acta Biotheoretica 45 (3-4):221-226.
    The conviction, due to previous failures, that bacteriology and darwinism were incompatible, has postponed the application of molecular phylogenesis to bacteria. But once introduced, this new field has led to a profound revolution of this science. A stable classification of the bacteria is at last possible; a new domain, the Archae, as distant from the Bacteria as from the Eukarya, has been discovered; noncultivable new species can be identified from the environment. It may even be possible to unravel the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  9
    The cytoplasmic structure hypothesis for ribosome assembly, vertical inheritance, and phylogeny.David S. Thaler - 2009 - Bioessays 31 (7):774-783.
    Fundamental questions in evolution concern deep divisions in the living world and vertical versus horizontal information transfer. Two contrasting views are: (i) three superkingdoms Archaea, Eubacteria, and Eukarya based on vertical inheritance of genes encoding ribosomes; versus (ii) a prokaryotic/eukaryotic dichotomy with unconstrained horizontal gene transfer (HGT) among prokaryotes. Vertical inheritance implies continuity of cytoplasmic and structural information whereas HGT transfers only DNA. By hypothesis, HGT of the translation machinery is constrained by interaction between new ribosomal gene products and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Eukaryotes first: how could that be? [REVIEW]Carlos Mariscal & W. Ford Doolittle - 2015 - Philosophical Transactions of the Royal Society B: Biological Sciences 370:1-10.
    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such ‘eukaryotes first’ (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier ‘progenotic’ period or RNAworld. Bacteria and Archaea thus must have lost these complex features secondarily, through (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  43
    Pluralism or unity in biology: could microbes hold the secret to life?Carol E. Cleland - 2013 - Biology and Philosophy 28 (2):189-204.
    Pluralism is popular among philosophers of biology. This essay argues that negative judgments about universal biology, while understandable, are very premature. Familiar life on Earth represents a single example of life and, most importantly, there are empirical as well as theoretical reasons for suspecting that it may be unrepresentative. Scientifically compelling generalizations about the unity of life must await the discovery of forms of life descended from an alternative origin, the most promising candidate being the discovery of extraterrestrial life. Nonetheless, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations