16 found
Order:
Disambiguations
David Pincus [17]David I. Pincus [1]
  1.  4
    Chaos and Complexity in Psychology: The Theory of Nonlinear Dynamical Systems.Stephen J. Guastello, Matthijs Koopmans & David Pincus (eds.) - 2009 - Cambridge University Press.
    This book reports recent landmark developments and the state of the art in NDS science in psychological theory and research.
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  2.  8
    Neural Substrates of Consciousness: Implications for Clinical Psychiatry.Douglas F. Watt & David I. Pincus - 2004 - In Jaak Panksepp (ed.), Textbook of Biological Psychiatry. Wiley-Liss. pp. 75-110.
  3. Definability of measures and ultrafilters.David Pincus & Robert M. Solovay - 1977 - Journal of Symbolic Logic 42 (2):179-190.
  4.  15
    Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods.David Pincus - 1972 - Journal of Symbolic Logic 37 (4):721-743.
  5.  6
    Psychotherapy Is Chaotic—(Not Only) in a Computational World.Günter K. Schiepek, Kathrin Viol, Wolfgang Aichhorn, Marc-Thorsten Hütt, Katharina Sungler, David Pincus & Helmut J. Schöller - 2017 - Frontiers in Psychology 8.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Meeting of the association for symbolic logic seattle 1973.Anne C. Morel, Ronald Harrop, Miriam Lucian & David Pincus - 1974 - Journal of Symbolic Logic 39 (1):195-208.
  7.  26
    Herman Rubin and Jean E. Rubin. Equivalents of the axiom of choice, II. Studies in logic and the foundations of mathematics, vol. 116. North-Holland, Amsterdam, New York, and Oxford, 1985, xxviii + 322 pp. [REVIEW]David Pincus - 1987 - Journal of Symbolic Logic 52 (3):867-869.
  8.  13
    Azriel Lévy. The Fraenkel-Moslowski method for independence proofs in set theory. The theory of models, Proceedings of the 1963 International Symposium at Berkeley, edited by J. W. Addison, Leon Henkin, and Alfred Tarski, Studies in logic and the foundations of mathematics, North-Holland Publishing Company, Amsterdam 1965, pp. 221–228. - Paul E. Howard. Limitations on the Fraenkel-Mostowski method of independence proofs. The journal of symbolic logic, vol. 38 , pp. 416–422. [REVIEW]David Pincus - 1975 - Journal of Symbolic Logic 40 (4):631.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  18
    Review: J. D. Halpern, H. Lauchli, A Partition Theorem; J. D. Halpern, A. Levy, The Boolean Prime Ideal Theorem Does Not Imply the Axiom of Choice. [REVIEW]David Pincus - 1974 - Journal of Symbolic Logic 39 (1):181-182.
  10.  13
    Halpern J. D. and Läuchli H.. A partition theorem. Transactions of the American Mathematical Society, vol. 124 , pp. 360–367.Halpern J. D. and Lévy A.. The Boolean prime ideal theorem does not imply the axiom of choice. Axiomatic set theory, Proceedings of symposia in pure mathematics, vol. 13 part 1, American Mathematical Society, Providence, Rhode Island, 1971, pp. 83–134. [REVIEW]David Pincus - 1974 - Journal of Symbolic Logic 39 (1):181-182.
  11.  3
    Review: A. Levy, The Interdependence of Certain Consequences of the Axiom of Choice. [REVIEW]David Pincus - 1975 - Journal of Symbolic Logic 40 (3):461-461.
  12.  9
    Lévy A.. The interdependence of certain consequences of the axiom of choice. Fundamenta mathematicae, vol. 54 no. 2 , pp. 135–157. [REVIEW]David Pincus - 1975 - Journal of Symbolic Logic 40 (3):461-461.
  13.  18
    Support structures for the axiom of choice.David Pincus - 1971 - Journal of Symbolic Logic 36 (1):28-38.
  14.  11
    Review: Herman Rubin, Jean E. Rubin, Equivalents of the Axiom of Choice, II. [REVIEW]David Pincus - 1987 - Journal of Symbolic Logic 52 (3):867-869.
  15.  14
    The dense linear ordering principle.David Pincus - 1997 - Journal of Symbolic Logic 62 (2):438-456.
    Let DO denote the principle: Every infinite set has a dense linear ordering. DO is compared to other ordering principles such as O, the Linear Ordering principle, KW, the Kinna-Wagner Principle, and PI, the Prime Ideal Theorem, in ZF, Zermelo-Fraenkel set theory without AC, the Axiom of Choice. The main result is: Theorem. $AC \Longrightarrow KW \Longrightarrow DO \Longrightarrow O$ , and none of the implications is reversible in ZF + PI. The first and third implications and their irreversibilities were (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  16.  21
    On the Independence of the Kinna Wagner Principle.David Pincus - 1974 - Mathematical Logic Quarterly 20 (31-33):503-516.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations