This paper is a general introduction to Positive Logic, where only what we call h-inductive sentences are under consideration, allowing the extension to homomorphisms of model-theoric notions which are classically associated to embeddings; in particular, the existentially closed models, that were primitively defined by Abraham Robinson, become here positively closed models. It accounts for recent results in this domain, and is oriented towards the positivisation of Jonsson theories.
Les corps algébriquement clos, réels clos et pseudo-finis n'ont, pour chaque entier n, qu'un nombre fini d'extensions de degré n; nous montrons qu'ils partagent cette propriété avec tous les corps qui, comme eux, satisfont une propriété très rudimentaire de préservation de la dimension, de nature modèle-théorique. Ce résultat est atteint en montrant qu'une certaine action du groupe GLn d'un tel corps n'a qu'un nombre fini d'orbites. /// La korpoj algebre fermataj, reale fermataj kaj pseudofinataj ne havas, pri ciu integro n, (...) pli ol finitan nombron de sternejoj kun grado n; ni montras ke ili kunpartigas tiu ci propecon kun ciu tiel korpoj kiuj kontentigas kiel ili unu tre simplan modelteorian propecon de konserveco de la amplekso. Pri atingi la resultaton, ni montras ke kelka ago de la grupo GLn de tiel korpo havas sole finitan nombron de orbitoj. (shrink)
We revisit the foundations of positive model theory, introducing h-inductive sentences. These allow a considerably simplified presentation of positive model theory, as well as a characterisation of Hausdorff cats by an amalgamation property of their h-inductive theory.
Ni konstruas nun malbonajn korpojn, kun malfinita Morleya ranko, kiuj estas ricevitaj per memsuficanta amalgameco de korpoj kun unara predikato nomanta sumigan au obligan subgrupon, ciam lau la Hrushovskija maniero. Al uzado de ciuj kiuj la anglujon malkonprenas, tiel tradukigas la supera citajo : "Estas prava ke tiu ci kiu kun la sago interrilatigas, la sagecon rikoltas". Gustatempe, la autoro varmege dankas ciujn kiuj la korektan citajon sendis al li, speciale la unuan respondinton : David KUEKER.
La Logique positive a été introduite au début de ce troisième millénaire par Itaï Ben Yaacov, qui y a été conduit par une nécessité interne à la Théorie des modèles. Dans ce contexte de validité du Théorème de compacité, l’absence de négation provoque des situations inhabituelles, comme celle des structures infinies qui ont une extension élémentaire maximale, que nous étudions ici.
We develop a Sylow theory for stable groups satisfying certain additional conditions (2-finiteness, solvability or smallness) and show that their maximal p-subgroups are locally finite and conjugate. Furthermore, we generalize a theorem of Baer-Suzuki on subgroups generated by a conjugacy class of p-elements.
If G is an omega-stable group with a normal definable subgroup H, then the Sylow-2-subgroups of G/H are the images of the Sylow-2-subgroups of G. /// Sei G eine omega-stabile Gruppe und H ein definierbarer Normalteiler von G. Dann sind die Sylow-2-Untergruppen von G/H Bilder der Sylow-2-Untergruppen von G.
RésuméL'analyse de la démonstration par contradiction de Frécon 2018 qui est faite dans Poizat 2018 met en évidence la structure symétrique des groupes de rang de Morley fini sans involutions; en effet, cette démonstration consiste en la construction d'un espace symétrique de dimension deux, puis à montrer que ce plan ne peut exister.Aux sous-espaces symétriques définissables de ces groupes sont associées des symétries et des transvexions, qu'on entreprend d'étudier ici dans l'abstrait, sans référence à un groupe qui les enveloppe; cela (...) nous mène à considérer des structures introduites axiomatiquement que nous appelons symétrons.Le $Z^*$ -Theorem de Glauberman permet d'élucider complètement la structure des symétrons finis: chacun est isomorphe à l'ensemble des symétries associées à un sous-espace symétrique d'un groupe fini sans involutions, qui est loin d'être uniquement déterminé: de fait, il existe des groupes finis non isomorphes qui ont les mêmes symétries, et aussi des symétrons finis qui ne sont pas isomorphes aux symétries d'un groupe,La situation est plus incertaine dans le cas des symétrons de rang de Morley fini, ou même algébriques, qui sont l'objet d'étude principal de cet article. Mais bien qu'un symétron soit une structure nettement plus faible qu'un groupe, nous pouvons étendre aux symétrons des résultats bien connus à propos des groupes de rang de Morley fini: condition de chaîne, décomposition en composantes connexes, caractérisation des parties définissables génériques, génération elliptique, etc. Ces propriétés sont nouvelles même dans le cas des sous-espaces symétriques d’un groupe, et permettent de court-circuiter les calculs de Frécon dans la construction de son plan paradoxal.En outre, sous l'hypothèse de la Conjecture d'Algébricité, nous généralisons le Théorème de Glauberman au contexte de rang de Morley fini.The role played by the symmetric structure of a group of finite Morley rank without involutions in the proof by contradiction of Frécon 2018 was put in evidence in Poizat 2018; indeed, this proof consists in the construction of a symmetric space of dimension two, and then in showing that such a plane cannot exist.To a definable symmetric subset of such a group are associated symmetries and transvections, that we undertake here to study in the abstract, without mentioning a group envelopping them. This leads us to consider axiomatically defined structures that we call symmetrons.Glauberman's $Z^*$ -Theorem allows to elucidate completely the structure of the finite symmetrons: each of them is isomorphic to the set of symmetries associated to a symmetric subspace of a finite group without involutions, which is far from being uniquely determined. In fact, there exist non-isomorphic finite groups which have the same symmetries, and also finite symmetrons which are not isomorphic to the symmetries of a group.The situation is not so clear in the case of symmetrons of finite Morley rank, or even algebraic, which are the main objects of study of this paper. But in spite of the fact that a symmetron be a structure much weaker that a group, we can extend to symmetrons some well-known results concerning groups of finite Morley rank: chain condition, decomposition into connected components, characterisation of the generic definable subsets, elliptic generation, etc. These properties are new even in the case of a symmetric subspace of a group, and allow to bypass the computations made by Frécon during the construction of his paradoxical plane.Moreover, assuming the Algebricity Conjecture, we generalize Glauberman's Theorem to the finite Morley rank context. (shrink)
A value space is a topological algebra equipped with a non-empty family of continuous quantifiers . We will describe first-order logic on the basis of . Operations of are used as connectives and its relations are used to define statements. We prove under some normality conditions on the value space that any theory in the new setting can be represented by a classical first-order theory.
Nous définissons une classe de suites de polynômes, calculés par des circuits de complexité polynomiale comprenant des additions, des soustractions, des multiplications et des sommations de Valiant. Nous montrons que cette classe est close pour la prise de la fonction-coefficient, définie au paragraphe 3 de cet article: nous en déduisons l'existence d'un circuit de complexité 72.n2, calculant le coefficient binomial de deux nombres de n chiffres, donnés en base 2. Il est par ailleurs facile de construire un circuit de complexité (...) 17.n + 2 calculant la factorielle d'un nombre de n chiffres. La présence de 2.n sommations d'effet exponentiel dans chacun de ces circuits en affecte gravement l'intérêt pratique. Il est peu probable, ou du moins peu souhaitable, qu'on puisse éliminer ces sommations sans explosion, car cela provoquerait la catastrophe cryptographique que redoutent tous les banquiers: néanmoins, nous ne savons pas séparer la classe définie ici de celle des suites de polynômes calculables en un nombre polynomial d'opérations arithmétiques. Cela n'a rien de surprenant, vu la très grande affinité qu'elle a avec la classe PSPACE: nous montrons en effet que cette classe est identique à la classe VPSPACE, définie antérieurement par Koiran et Perifel, qui apparaît ici sous une forme bien plus maniable que l'originale. (shrink)
We comment on an early and inspiring remark of an Omskian mathematician concerning the Cherlin—Zilber Conjecture, meeting in passing some well-known properties of algebraic groups whose generalization to arbitrary groups of finite Morley rank seems to be very uncertain. This paper assumes a familiarity with the model theoretic tools involved in the study of the groups of finite Morley rank.
We study the class of structures formed by all the polygons over a given monoid, which is equivalent to the study of the varieties in a language containing only unary functions. We collect and amplify previous results concerning their stability and superstability. Then we characterize the regular monoids for which all these polygons are ω-stable; the question about the existence of a non regular monoid with this property is left open.