We introduce the notion of a lovely pair of models of a simple theory T, generalizing Poizat's “belles paires” of models of a stable theory and the third author's “generic pairs” of models of an SU-rank 1 theory. We characterize when a saturated model of the theory TP of lovely pairs is a lovely pair , finding an analog of the nonfinite cover property for simple theories. We show that, under these hypotheses, TP is also simple, and we study forking (...) and canonical bases in TP. We also prove that assuming only that T is low, the existentially universal models of the universal part of a natural expansion TP+ of TP, are lovely pairs, and “simple Robinson universal domains”. (shrink)
In this paper we introduce the notion of a first order topological structure, and consider various possible conditions on the complexity of the definable sets in such a structure, drawing several consequences thereof.Our aim is to develop, for a restricted class of unstable theories, results analogous to those for stable theories. The “material basis” for such an endeavor is the analogy between the field of real numbers and the field of complex numbers, the former being a “nicely behaved” unstable structure (...) and the latter the archetypal stable structure. In this sense we try here to situate our work ono-minimal structures [PS] in a general topological context. Note, however, that thep-adic numbers, and structures definable therein, will also fit into our analysis.In the remainder of this section we discuss several ways of studying topological structures model-theoretically. Eventually we fix on the notion of a structure in which the topology is “explicitly definable” in the sense of Flum and Ziegler [FZ]. In §2 we introduce the hypothesis that every definable set is a Boolean combination of definable open sets. In §3 we introduce a “dimension rank” on definable sets. In §4 we consider structures on which this rank is defined, and for which also every definable set has a finite number of definably connected definable components. We show that prime models over sets exist under such conditions. (shrink)
We study type-definable subgroups of small index in definable groups, and the structure on the quotient, in first order structures. We raise some conjectures in the case where the ambient structure is o-minimal. The gist is that in this o-minimal case, any definable group G should have a smallest type-definable subgroup of bounded index, and that the quotient, when equipped with the logic topology, should be a compact Lie group of the "right" dimension. I give positive answers to the conjectures (...) in the special cases when G is 1-dimensional, and when G is definably simple. (shrink)
It is known Hrushovski and Pillay that a group G definable in the field \ of p-adic numbers is definably locally isomorphic to the group \\) of p-adic points of a algebraic group H over \. We observe here that if H is commutative then G is commutative-by-finite. This shows in particular that any one-dimensional group G definable in \ is commutative-by-finite. This result extends to groups definable in p-adically closed fields. We prove our results in the more general context (...) of geometric structures. (shrink)
We develop a basic theory of rosy groups and we study groups of small Uþ-rank satisfying NIP and having finitely satisfiable generics: Uþ-rank 1 implies that the group is abelian-by-finite, Uþ-rank 2 implies that the group is solvable-by-finite, Uþ-rank 2, and not being nilpotent-by-finite implies the existence of an interpretable algebraically closed field.
For G a group definable in some structure M, we define notions of “definable” compactification of G and “definable” action of G on a compact space X , where the latter is under a definability of types assumption on M. We describe the universal definable compactification of G as View the MathML source and the universal definable G-ambit as the type space SG. We also point out the existence and uniqueness of “universal minimal definable G-flows”, and discuss issues of amenability (...) and extreme amenability in this definable category, with a characterization of the latter. For the sake of completeness we also describe the universal compactification and universal G-ambit in model-theoretic terms, when G is a topological group. (shrink)
We give a commentary on Newelski's suggestion or conjecture [8] that topological dynamics, in the sense of Ellis [3], applied to the action of a definable group $G(M)$ on its “external type space” $S_{G,\textit{ext}}(M)$, can explain, account for, or give rise to, the quotient $G/G^{00}$, at least for suitable groups in NIP theories. We give a positive answer for measure-stable (or $fsg$) groups in NIP theories. As part of our analysis we show the existence of “externally definable” generics of $G(M)$ (...) for measure-stable groups. We also point out that for $G$ definably amenable (in a NIP theory) $G/G^{00}$ can be recovered, via the Ellis theory, from a natural Ellis semigroup structure on the space of global $f$-generic types. (shrink)
The notion of CM-triviality was introduced by Hrushovski, who showed that his new strongly minimal sets have this property. Recently Baudisch has shown that his new ω 1 -categorical group has this property. Here we show that any group of finite Morley rank definable in a CM-trivial theory is nilpotent-by-finite, or equivalently no simple group of finite Morley rank can be definable in a CM-trivial theory.
We prove that if G is a group definable in a saturated o-minimal structure, then G has no infinite descending chain of type-definable subgroups of bounded index. Equivalently, G has a smallest type-definable subgroup G00 of bounded index and G/G00 equipped with the “logic topology” is a compact Lie group. These results give partial answers to some conjectures of the fourth author.
The "space" of Lascar strong types, on some sort and relative to a given complete theory T, is in general not a compact Hausdorff topological space. We have at least three aims in this paper. The first is to show that spaces of Lascar strong types, as well as other related spaces and objects such as the Lascar group Gal L of T, have well-defined Borel cardinalities. The second is to compute the Borel cardinalities of the known examples as well (...) as of some new examples that we give. The third is to explore notions of definable map, embedding, and isomorphism, between these and related quotient objects. We also make some conjectures, the main one being roughly "smooth if and only if trivial". The possibility of a descriptive set-theoretic account of the complexity of spaces of Lascar strong types was touched on in the paper [E. Casanovas, D. Lascar, A. Pillay and M. Ziegler, Galois groups of first order theories, J. Math. Logic1 305–319], where the first example of a "non-G-compact theory" was given. The motivation for writing this paper is partly the discovery of new examples via definable groups, in [A. Conversano and A. Pillay, Connected components of definable groups and o-minimality I, Adv. Math.231 605–623; Connected components of definable groups and o-minimality II, to appear in Ann. Pure Appl. Logic] and the generalizations in [J. Gismatullin and K. Krupiński, On model-theoretic connected components in some group extensions, preprint, arXiv:1201.5221v1]. (shrink)
Les corps algébriquement clos, réels clos et pseudo-finis n'ont, pour chaque entier n, qu'un nombre fini d'extensions de degré n; nous montrons qu'ils partagent cette propriété avec tous les corps qui, comme eux, satisfont une propriété très rudimentaire de préservation de la dimension, de nature modèle-théorique. Ce résultat est atteint en montrant qu'une certaine action du groupe GLn d'un tel corps n'a qu'un nombre fini d'orbites. /// La korpoj algebre fermataj, reale fermataj kaj pseudofinataj ne havas, pri ciu integro n, (...) pli ol finitan nombron de sternejoj kun grado n; ni montras ke ili kunpartigas tiu ci propecon kun ciu tiel korpoj kiuj kontentigas kiel ili unu tre simplan modelteorian propecon de konserveco de la amplekso. Pri atingi la resultaton, ni montras ke kelka ago de la grupo GLn de tiel korpo havas sole finitan nombron de orbitoj. (shrink)
Let T be a strongly minimal theory with quantifier elimination. We show that the class of existentially closed models of T{“σ is an automorphism”} is an elementary class if and only if T has the definable multiplicity property, as long as T is a finite cover of a strongly minimal theory which does have the definable multiplicity property. We obtain cleaner results working with several automorphisms, and prove: the class of existentially closed models of T{“σi is an automorphism”: i=1,2} is (...) an elementary class if and only if T has the definable multiplicity property. (shrink)
The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
We prove that if T is a stable theory with only a finite number of countable models, then T contains a type-definable pseudoplane. We also show that for any stable theory T either T contains a type-definable pseudoplane or T is weakly normal.
We introduce and study the notions of a PAC-substructure of a stable structure, and a bounded substructure of an arbitrary substructure, generalizing [10]. We give precise definitions and equivalences, saying what it means for properties such as PAC to be first order, study some examples (such as differentially closed fields) in detail, relate the material to generic automorphisms, and generalize a "descent theorem" for pseudo-algebraically closed fields to the stable context. We also point out that the elementary invariants of pseudo-algebraically (...) closed fields from [6] are also valid for pseudo-differentially closed fields. (shrink)
We continue the study of simple theories begun in [3] and [5]. We first find the right analogue of definability of types. We then develop the theory of generic types and stabilizers for groups definable in simple theories. The general ideology is that the role of formulas (or definability) in stable theories is replaced by partial types (or ∞-definability) in simple theories.
We prove (Proposition 2.1) that if $\mu$ is a generically stable measure in an NIP (no independence property) theory, and $\mu(\phi(x,b))=0$ for all $b$ , then for some $n$ , $\mu^{(n)}(\exists y(\phi(x_{1},y)\wedge \cdots \wedge\phi(x_{n},y)))=0$ . As a consequence we show (Proposition 3.2) that if $G$ is a definable group with fsg (finitely satisfiable generics) in an NIP theory, and $X$ is a definable subset of $G$ , then $X$ is generic if and only if every translate of $X$ does not (...) fork over $\emptyset$ , precisely as in stable groups, answering positively an earlier problem posed by the first two authors. (shrink)
We define a generalized notion of rank for stable theories without dense forking chains, and use it to derive that every type is domination-equivalent to a finite product of regular types. We apply this to show that in a small theory admitting finite coding, no realisation of a nonforking extension of some strong type can be algebraic over some realisation of a forking extension.
In [E. Hrushovski, D. Palacín and A. Pillay, On the canonical base property, Selecta Math. 19 865–877], Hrushovski and the authors proved, in a certain finite rank environment, that rigidity of definable Galois groups implies that [Formula: see text] has the canonical base property in a strong form; “internality to” being replaced by “algebraicity in”. In the current paper, we give a reasonably robust definition of the “strong canonical base property” in a rather more general finite rank context than [E. (...) Hrushovski, D. Palacín and A. Pillay, On the canonical base property, Selecta Math. 19 865–877], and prove its equivalence with rigidity of the relevant definable Galois groups. The new direction is an elaboration on the old result that [Formula: see text]-based groups are rigid. (shrink)
A theory T is called almost [MATHEMATICAL SCRIPT CAPITAL N]0-categorical if for any pure types p1,…,pn there are only finitely many pure types which extend p1 ∪…∪pn. It is shown that if T is an almost [MATHEMATICAL SCRIPT CAPITAL N]0-categorical theory with I = 3, then a dense linear ordering is interpretable in T.
Let T be a complete O-minimal theory in a language L. We first give an elementary proof of the result (due to Marker and Steinhorn) that all types over Dedekind complete models of T are definable. Let L * be L together with a unary predicate P. Let T * be the L * -theory of all pairs (N, M), where M is a Dedekind complete model of T and N is an |M| + -saturated elementary extension of N (and (...) M is the interpretation of P). Using the definability of types result, we show that T * is complete and we give a simple set of axioms for T * . We also show that for every L * -formula φ(x) there is an L-formula ψ(x) such that $T^\ast \models (\forall \mathbf{x})(P(\mathbf{x}) \rightarrow (\phi(\mathbf{x}) \mapsto \psi (\mathbf{x}))$ . This yields the following result: Let M be a Dedekind complete model of T. Let φ(x, y) be an L-formula where l(y) = k. Let $\mathbf{X} = \{X \subset M^k$ : for some a in an elementary extension N of M, X = φ (a,y N ∩ M k }. Then there is a formula ψ(y, z) of L such that X = {ψ (y, b) M : b in M}. (shrink)
We prove here:Theorem. LetT be a countable complete superstable non ω-stable theory with fewer than continuum many countable models. Then there is a definable groupG with locally modular regular generics, such thatG is not connected-by-finite and any type inG eq orthogonal to the generics has Morley rank.Corollary. LetT be a countable complete superstable theory in which no infinite group is definable. ThenT has either at most countably many, or exactly continuum many countable models, up to isomorphism.
We clarify and correct some statements and results in the literature concerning unimodularity in the sense of Hrushovski [7], and measurability in the sense of Macpherson and Steinhorn [8], pointing out in particular that the two notions coincide for strongly minimal structures and that another property from [7] is strictly weaker, as well as "completing" Elwes' proof [5] that measurability implies 1-basedness for stable theories.
We point out that a certain complex compact manifold constructed by Lieberman has the dimensional order property, and has U-rank different from Morley rank. We also give a sufficient condition for a Kahler manifold to be totally degenerate (that is, to be an indiscernible set, in its canonical language) and point out that there are K3 surfaces which satisfy these conditions.
We prove that any countable simple unidimensional theory T is supersimple, under the additional assumptions that T eliminates hyperimaginaries and that the $D_\phi-ranks$ are finite and definable.
In this paper we establish the following theorems. THEOREM A. Let T be a complete first-order theory which is uncountable. Then: (i) I(|T|, T) ≥ ℵ 0 . (ii) If T is not unidimensional, then for any λ ≥ |T|, I (λ, T) ≥ ℵ 0 . THEOREM B. Let T be superstable, not totally transcendental and nonmultidimensional. Let θ(x) be a formula of least R ∞ rank which does not have Morley rank, and let p be any stationary completion (...) of θ which also fails to have Morley rank. Then p is regular and locally modular. (shrink)