Saturation and solvability in abstract elementary classes with amalgamation

Archive for Mathematical Logic 56 (5-6):671-690 (2017)
  Copy   BIBTEX

Abstract

Theorem 0.1LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an abstract elementary class with amalgamation and no maximal models. Letλ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is categorical inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, then the model of cardinalityλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}is Galois-saturated.This answers a question asked independently by Baldwin and Shelah. We deduce several corollaries: K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document} has a unique limit model in each cardinal below λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document} is weakly tame below λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, and the thresholds of several existing categoricity transfers can be improved.We also prove a downward transfer of solvability :Corollary 0.2LetK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}be an AEC with amalgamation and no maximal models. Letλ>μ>LS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda> \mu > {LS}$$\end{document}. IfK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is solvable inλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, thenK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {K}$$\end{document}is solvable inμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 79,912

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Categoricity in abstract elementary classes with no maximal models.Monica VanDieren - 2006 - Annals of Pure and Applied Logic 141 (1):108-147.
Categoricity for abstract classes with amalgamation.Saharon Shelah - 1999 - Annals of Pure and Applied Logic 98 (1-3):261-294.
A topology for galois types in abstract elementary classes.Michael Lieberman - 2011 - Mathematical Logic Quarterly 57 (2):204-216.
Abstract elementary classes and infinitary logics.David W. Kueker - 2008 - Annals of Pure and Applied Logic 156 (2):274-286.
Independence in finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2006 - Annals of Pure and Applied Logic 143 (1-3):103-138.
Types in Abstract Elementary Classes.Tapani Hyttinen - 2004 - Notre Dame Journal of Formal Logic 45 (2):99-108.

Analytics

Added to PP
2017-08-04

Downloads
11 (#865,952)

6 months
1 (#479,521)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Toward a stability theory of tame abstract elementary classes.Sebastien Vasey - 2018 - Journal of Mathematical Logic 18 (2):1850009.
Good frames in the Hart–Shelah example.Will Boney & Sebastien Vasey - 2018 - Archive for Mathematical Logic 57 (5-6):687-712.
Axiomatizing AECs and applications.Samson Leung - 2023 - Annals of Pure and Applied Logic 174 (5):103248.
On categoricity in successive cardinals.Sebastien Vasey - 2020 - Journal of Symbolic Logic:1-19.

View all 7 citations / Add more citations

References found in this work

Categoricity for abstract classes with amalgamation.Saharon Shelah - 1999 - Annals of Pure and Applied Logic 98 (1-3):261-294.
Tameness from large cardinal axioms.Will Boney - 2014 - Journal of Symbolic Logic 79 (4):1092-1119.
Shelah's eventual categoricity conjecture in universal classes: Part I.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (9):1609-1642.
Canonical forking in AECs.Will Boney, Rami Grossberg, Alexei Kolesnikov & Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (7):590-613.
Building independence relations in abstract elementary classes.Sebastien Vasey - 2016 - Annals of Pure and Applied Logic 167 (11):1029-1092.

View all 18 references / Add more references