Antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes and the jump hierarchy [Book Review]

Archive for Mathematical Logic 52 (1-2):137-142 (2013)
  Copy   BIBTEX

Abstract

We prove two antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes. The first is a jump inversion theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes with respect to the global structure of the Turing degrees. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subseteq 2^\omega}$$\end{document}, define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \in P}$$\end{document} of degree a. For any degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf a \geq 0'}}$$\end{document}, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Jump}^{-1}({\bf a) = \{b : b' = a \}}}$$\end{document}. We prove that, for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf a \geq 0'}}$$\end{document} and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} class P, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Jump}^{-1} ({\bf a}) \subseteq S(P)}$$\end{document} then P contains a member of every degree. For any degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf a \geq 0'}}$$\end{document} such that a is recursively enumerable (r.e.) in 0', let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Jump_{\bf \leq 0'} ^{-1}({\bf a)=\{b : b \leq 0' \textrm{and} b' = a \}}}$$\end{document}. The second theorem concerns the degrees below 0'. We prove that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf a\geq 0'}}$$\end{document} which is recursively enumerable in 0' and any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} class P, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Jump}_{\bf \leq 0'} ^{-1}({\bf a)} \subseteq S(P)}$$\end{document} then P contains a member of every degree.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,628

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
An Analysis of the W -Hierarchy.Yijia Chen, Jörg Flum & Martin Grohe - 2007 - Journal of Symbolic Logic 72 (2):513 - 534.
P-hierarchy on β ω.Andrzej Starosolski - 2008 - Journal of Symbolic Logic 73 (4):1202-1214.
Uncountable master codes and the jump hierarchy.Robert S. Lubarsky - 1987 - Journal of Symbolic Logic 52 (4):952-958.
Benign cost functions and lowness properties.Noam Greenberg & André Nies - 2011 - Journal of Symbolic Logic 76 (1):289 - 312.
Prädikative Klassen.Ralf-Dieter Schindler - 1993 - Erkenntnis 39 (2):209 - 241.

Analytics

Added to PP
2013-10-27

Downloads
27 (#586,219)

6 months
2 (#1,185,463)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
An effectively closed set with no join property.Ahmet Çevik - 2021 - Mathematical Logic Quarterly 67 (3):313-320.

Add more citations

References found in this work

Degrees of models.J. R. Shoenfield - 1960 - Journal of Symbolic Logic 25 (3):233-237.
Separable Theories.A. Ehrenfeucht - 1969 - Journal of Symbolic Logic 34 (1):127-127.

Add more references