Abstract
I argue there are some objects which do not respect the Law of the Excluded Middle, i.e., which are such that, for some property F, the disjunction Fo v ~Fo fails to be true. I call such objects “odd objects” and present three examples—fictional objects, nonsort objects, and quantum objects. I argue that each of these objects is best understood as violating LEM. I, then, discuss Jessica Wilson’s account of metaphysical indeterminacy. I show how the indeterminacy which arises with odd objects can be accounted for on Wilson’s account. I, then, argue that my Wilson-inspired, but non-LEM-respecting, account of metaphysical indeterminacy is superior to Wilson’s in terms of costs and benefits.