A teleosemantic approach to information in the brain

Biology and Philosophy 27 (1):49-71 (2012)
  Copy   BIBTEX

Abstract

The brain is often taken to be a paradigmatic example of a signaling system with semantic and representational properties, in which neurons are senders and receivers of information carried in action potentials. A closer look at this picture shows that it is not as appealing as it might initially seem in explaining the function of the brain. Working from several sender-receiver models within the teleosemantic framework, I will first argue that two requirements must be met for a system to support genuine semantic information: 1. The receiver must be competent —that is, it must be able to extract rewards from its environment on the basis of the signals that it receives. 2. The receiver must have some flexibility of response relative to the signal received. In the second part of the paper, this initial framework will be applied to neural processes, pointing to the surprising conclusion that signaling at the single-neuron level is only weakly semantic at best. Contrary to received views, neurons will have little or no access to semantic information (though their patterns of activity may carry plenty of quantitative, correlational information) about the world outside the organism. Genuine representation of the world requires an organism - level receiver of semantic information, to which any particular set of neurons makes only a small contribution

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,440

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2011-10-15

Downloads
363 (#53,696)

6 months
23 (#116,739)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Rosa Cao
Stanford University