Results for 'generalization of general relativity'

1000+ found
Order:
  1. Roberto Lalli. Building the general relativity and gravitation community during the cold war. Cham, Switzerland: Springer. Springer Briefs in History of Science and Technology, 2017, xiv + 168 pp. ISBN: 9783319546544. [REVIEW]Scott A. Walter - 2020 - Centaurus 61 (4):451-453.
  2. Robert Hermann.Bohr-Sommerfeld Quantization in General Relativity - 1980 - In A. R. Marlow (ed.), Quantum Theory and Gravitation. Academic Press.
     
    Export citation  
     
    Bookmark  
  3.  23
    General Relativity as a Collection of Collections of Models.J. B. Manchak - 2021 - In Judit Madarász & Gergely Székely (eds.), Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Springer. pp. 409-425.
    One usually identifies a particular collection of geometric objects with the models of general relativity. But within this standard collection lurk ‘physically unreasonable’ models of spacetime. If such models are ruled out, attention can be restricted to some sub-collection of ‘physically reasonable’ models which can be considered a variant theory of general relativity. Since we have yet to identify a privileged sub-collection of ‘physically reasonable’ models, it is helpful to think of ‘general relativity’ in (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be seen as informational (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5. Attitude Control for.General Equations Of Motion - 1965 - In Karl W. Linsenmann (ed.), Proceedings. St. Louis, Lutheran Academy for Scholarship.
     
    Export citation  
     
    Bookmark  
  6.  57
    General relativity as a hybrid theory: The genesis of Einstein's work on the problem of motion.Dennis Lehmkuhl - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:176-190.
  7. Gravitation and cosmology: principles and applications of the general theory of relativity.Steven Weinberg - 1972 - New York,: Wiley.
    Weinberg's 1972 work, in his description, had two purposes. The first was practical to bring together and assess the wealth of data provided over the previous decade while realizing that newer data would come in even as the book was being printed. He hoped the comprehensive picture would prepare the reader and himself to that new data as it emerged. The second was to produce a textbook about general relativity in which geometric ideas were not given a starring (...)
    Direct download  
     
    Export citation  
     
    Bookmark   151 citations  
  8.  38
    General Relativity, MOND, and the problem of unconceived alternatives.Abhishek Kashyap - 2023 - European Journal for Philosophy of Science 13 (3):1-18.
    Observational discrepancies in galactic rotation curves and cluster dispersion data have been interpreted to imply the existence of dark matter. Numerous efforts at its detection, however, have failed to turn up any positive result. As a dynamical theory is always operative on the assumed mass distribution to predict kinematic observations, some scientists see the discrepancy as telling against General Relativity. Among the many theories that seek to modify gravity, those that are built on Modified Newtonian Dynamics (MOND), or (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  19
    Explanatory Report to the Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research.Directorate General I. Council of Europe - 2005 - Jahrbuch für Wissenschaft Und Ethik 10 (1):403-431.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  34
    General relativity; papers in honour of J. L. Synge.J. L. Synge & L. O'Raifeartaigh (eds.) - 1972 - Oxford,: Clarendon Press.
    Lanczos, C. Einstein's path from special to general relativity.--Balazs, N. L. The acceptability of physical theories: Poincaré versus Einstein.--Ellis, G. F. R. Global and non-global problems in cosmology, by G. F. R. Ellis and D. W. Sciama.--Ehlers, J. The geometry of free fall and light propagation, by J. Ehlers, F. A. E. Pirani and A. Schild.--Trautman, A. Invariance of Lagrangian systems.--Penrose, R. The geometry of impulsive gravitational waves.--Exact solutions of the Einstein-Maxwell equations for an accelerated charge.--Taub, A. H. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  11.  86
    Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  12.  91
    Two miracles of general relativity.James Read, Harvey R. Brown & Dennis Lehmkuhl - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:14-25.
    We approach the physics of \emph{minimal coupling} in general relativity, demonstrating that in certain circumstances this leads to violations of the \emph{strong equivalence principle}, which states that, in general relativity, the dynamical laws of special relativity can be recovered at a point. We then assess the consequences of this result for the \emph{dynamical perspective on relativity}, finding that potential difficulties presented by such apparent violations of the strong equivalence principle can be overcome. Next, we (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  13.  51
    On the reduction of general relativity to Newtonian gravitation.Samuel C. Fletcher - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:1-15.
    Intertheoretic reduction in physics aspires to be both to be explanatory and perfectly general: it endeavors to explain why an older, simpler theory continues to be as successful as it is in terms of a newer, more sophisticated theory, and it aims to relate or otherwise account for as many features of the two theories as possible. Despite often being introduced as straightforward cases of intertheoretic reduction, candidate accounts of the reduction of general relativity to Newtonian gravitation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  14. Does General Relativity Highlight Necessary Connections in Nature?Antonio Vassallo - 2021 - Synthese 199 (1-2):1-23.
    The dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein's equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  15. Deriving General Relativity from String Theory.Nick Huggett & Tiziana Vistarini - 2015 - Philosophy of Science 82 (5):1163-1174.
    Weyl symmetry of the classical bosonic string Lagrangian is broken by quantization, with profound consequences described here. Reimposing symmetry requires that the background space-time satisfy the equations of general relativity: general relativity, hence classical space-time as we know it, arises from string theory. We investigate the logical role of Weyl symmetry in this explanation of general relativity: it is not an independent physical postulate but required in quantum string theory, so from a certain point (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  16.  83
    General Relativity, Mental Causation, and Energy Conservation.J. Brian Pitts - 2022 - Erkenntnis 87 (4):1931-1973.
    The conservation of energy and momentum have been viewed as undermining Cartesian mental causation since the 1690s. Modern discussions of the topic tend to use mid-nineteenth century physics, neglecting both locality and Noether’s theorem and its converse. The relevance of General Relativity has rarely been considered. But a few authors have proposed that the non-localizability of gravitational energy and consequent lack of physically meaningful local conservation laws answers the conservation objection to mental causation: conservation already fails in GR, (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  56
    General relativity and the conceivability of time travel.Robert Weingard - 1979 - Philosophy of Science 46 (2):328-332.
    It has been suggested by several philosophers that many of the so-called paradoxes of backward time travel can be resolved if we conceive of the backward time traveller as having a zig-zag or N-shaped world line in spacetime. In this I am in general agreement. But there is still a problem in conceiving of backward time travel this way. In this note I will show how we can solve this problem by conceiving of backward time travel in terms of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18. The ontology of General Relativity.Gustavo E. Romero - forthcoming - In M. Novello & S. E. Perez Bergliaffa (eds.), General Relativity and Gravitation. Cambridge University Press.
    I discuss the ontological assumptions and implications of General Relativity. I maintain that General Relativity is a theory about gravitational fields, not about space-time. The latter is a more basic ontological category, that emerges from physical relations among all existents. I also argue that there are no physical singularities in space-time. Singular space-time models do not belong to the ontology of the world: they are not things but concepts, i.e. defective solutions of Einstein’s field equations. I (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. The Constraints General Relativity Places on Physicalist Accounts of Causality.Erik Curiel - 2000 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 15 (1):33-58.
    All accounts of causality that presuppose the propagation or transfer or some physical stuff to be an essential part of the causal relation rely for the force of their causal claims on a principle of conservation for that stuff. General Relativity does not permit the rigorous formulation of appropriate conservation principles. Consequently, in so far as General Relativity is considered and fundamental physical theory, such accounts of causality cannot be considered fundamental. The continued use of such (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  20.  78
    General relativity and the length of the past.Robert Weingard - 1979 - British Journal for the Philosophy of Science 30 (2):170-172.
  21.  18
    Decoding general relativity: Fulvio Melia: Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics. University of Chicago Press, Chicago, 2009, xi + 150 pp, US $25.00 HB.Daniel Kennefick - 2011 - Metascience 20 (1):91-93.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  28
    General relativity as a dynamical system on the manifold a of Riemannian metrics which cover diffeomorphisms.Arthur E. Fischer & Jerrold E. Marsden - 1969 - In D. Farnsworth (ed.), Methods of local and global differential geometry in general relativity. New York,: Springer Verlag. pp. 176--188.
  23.  77
    The beauty of general relativity.Wu Zhong Chao - 1997 - Foundations of Science 2 (1):61-64.
    The author proposes to add another dichotomy to the list of essential tensions proposed by Professor Duda, namely beauty and ugliness. Physicists believe that only beautiful theories describe the world correctly, and that General Relativity is one of the most beautiful physical theories. The author explains why physicists regard this theory as beautiful.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24. On the role of special relativity in general relativity.Harvey R. Brown - 1997 - International Studies in the Philosophy of Science 11 (1):67 – 81.
    The existence of a definite tangent space structure (metric with Lorentzian signature) in the general theory of relativity is the consequence of a fundamental assumption concerning the local validity of special relativity. There is then at the heart of Einstein's theory of gravity an absolute element which depends essentially on a common feature of all the non-gravitational interactions in the world, and which has nothing to do with space-time curvature. Tentative implications of this point for the significance (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  25.  4
    General Relativity: Incompatibility of two formulae for frequency shift.V. N. Strel’Tsov - 1999 - Apeiron 6:133-4.
    Direct download  
     
    Export citation  
     
    Bookmark  
  26. General relativity needs no interpretation.Erik Curiel - 2009 - Philosophy of Science 76 (1):44-72.
    I argue that, contrary to the recent claims of physicists and philosophers of physics, general relativity requires no interpretation in any substantive sense of the term. I canvass the common reasons given in favor of the alleged need for an interpretation, including the difficulty in coming to grips with the physical significance of diffeomorphism invariance and of singular structure, and the problems faced in the search for a theory of quantum gravity. I find that none of them shows (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  27. Why general relativity does need an interpretation.Gordon Belot - 1996 - Philosophy of Science 63 (3):88.
    There is a widespread impression that General Relativity, unlike Quantum Mechanics, is in no need of an interpretation. I present two reasons for thinking that this is a mistake. The first is the familiar hole argument. I argue that certain skeptical responses to this argument are too hasty in dismissing it as being irrelevant to the interpretative enterprise. My second reason is that interpretative questions about General Relativity are central to the search for a quantum theory (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  28.  34
    The multiple realizability of general relativity in quantum gravity.Rasmus Jaksland - 2019 - Synthese 199 (S2):441-467.
    Must a theory of quantum gravity have some truth to it if it can recover general relativity in some limit of the theory? This paper answers this question in the negative by indicating that general relativity is multiply realizable in quantum gravity. The argument is inspired by spacetime functionalism—multiple realizability being a central tenet of functionalism—and proceeds via three case studies: induced gravity, thermodynamic gravity, and entanglement gravity. In these, general relativity in the form (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  29.  30
    The Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time.Alexander Blum, Roberto Lalli & Jürgen Renn - 2015 - Isis 106 (3):598-620.
    The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  30.  21
    General relativity with a background metric.Nathan Rosen - 1980 - Foundations of Physics 10 (9-10):673-704.
    An attempt is made to remove singularities arising in general relativity by modifying it so as to take into account the existence of a fundamental rest frame in the universe. This is done by introducing a background metric γμν (in addition to gμν) describing a spacetime of constant curvature with positive spatial curvature. The additional terms in the field equations are negligible for the solar system but important for intense fields. Cosmological models are obtained without singular states but (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  31.  31
    General relativity and gravitational waves.Joseph Weber - 1961 - New York,: Interscience Publishers.
    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field. Approximately a quarter (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. The General Relativity Genesis: an Intertheoretic Context.Rinat M. Nugayev - 2017 - Voprosi Filosofii (The Problems of Philosophy) (1):62-70.
    Abstract. The theory-change epistemological model, tried on maxwellian revolution and special relativity genesis, is unfolded to apprehend general relativity genesis. It is exhibited that the dynamics of general relativity (GR) construction was largely governed by internal tensions of special relativity and Newton’s theory of gravitation. The research traditions’ encounter engendered construction of the hybrid domain at first with an irregular set of theoretical models. However, step by step, on revealing and gradual eliminating the contradictions (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  33. Causation and the conservation of energy in general relativity.Sebastián Murgueitio Ramírez, James Read & Andres Paez - forthcoming - The British Journal for the Philosophy of Science.
    Consensus in the contemporary philosophical literature has it that conserved quantity theories of causation such as that of Dowe [2000]—according to which causation is to be analysed in terms of the exchange of conserved quantities (e.g., energy)—face damning problems when confronted with contemporary physics, where the notion of conservation becomes delicate. In particular, in general relativity it is often claimed that there simply are no conservation laws for (say) total-stress energy. If this claim is correct, it is difficult (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  17
    An Astronomical Road to General Relativity: The Continuity between Classical and Relativistic Cosmology in the Work of Karl Schwarzschild.Matthias Schemmel - 2005 - Science in Context 18 (3):451-478.
    In this article it is argued that a continuity exists between Karl Schwarzschild's work on foundational problems on the borderline of physics and astronomy and his later occupation with general relativity. Based on an analysis of Schwarzschild's published works as well as formerly neglected unpublished notes it is shown that, long before the rise of general relativity, Schwarzschild was concerned with problems that later became associated with that theory. In particular he considered non-Euclidean cosmologies, linked the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Dependence relations in general relativity.Antonio Vassallo - 2019 - European Journal for Philosophy of Science 10 (1):1-28.
    The paper discusses from a metaphysical standpoint the nature of the dependence relation underpinning the talk of mutual action between material and spatiotemporal structures in general relativity. It is shown that the standard analyses of dependence in terms of causation or grounding are ill-suited for the general relativistic context. Instead, a non-standard analytical framework in terms of structural equation modeling is exploited, which leads to the conclusion that the kind of dependence encoded in the Einstein field equations (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Some philosophical prehistory of general relativity.Howard Stein - 1977 - In John Earman, Clark Glymour & John Stachel (eds.), Foundations of Space-Time Theories: Minnesota Studies in the Philosophy of Science. University of Minnesota Press. pp. 3-49.
     
    Export citation  
     
    Bookmark   40 citations  
  37.  80
    Did Einstein need general relativity to solve the problem of absolute space? Or had the problem already been solved by special relativity?Jon Dorling - 1978 - British Journal for the Philosophy of Science 29 (4):311-323.
  38. Explanatory Report to the Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research.Council of Europe, I. General & Legal Affairs - 2005 - Jahrbuch für Wissenschaft Und Ethik 10 (1).
     
    Export citation  
     
    Bookmark   5 citations  
  39.  45
    General Relativity Conflict and Rivalries: Einstein's Polemics with Physicists.Galina Weinstein - 2015 - Cambridge Scholars Press.
    This book focuses on Albert Einstein and his interactions with, and responses to, various scientists, both famous and lesser-known. It takes as its starting point that the discussions between Einstein and other scientists all represented a contribution to the edifice of general relativity and relativistic cosmology. These scientists with whom Einstein implicitly or explicitly interacted form a complicated web of collaboration, which this study explores, focusing on their implicit and explicit responses to Einstein s work. This analysis uncovers (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  18
    The physical foundations of general relativity.Dennis William Sciama - 1969 - Garden City, N.Y.,: Doubleday.
  41. Does General Relativity Allow an Observer to View an Eternity in a Finite Time?Mark Hogarth - 1992 - Foundations Of Physics Letters 5:173--181.
     
    Export citation  
     
    Bookmark   32 citations  
  42. General relativity and the standard model: Why evidence for one does not disconfirm the other.Nicholaos Jones - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):124-132.
    General Relativity and the Standard Model often are touted as the most rigorously and extensively confirmed scientific hypotheses of all time. Nonetheless, these theories appear to have consequences that are inconsistent with evidence about phenomena for which, respectively, quantum effects and gravity matter. This paper suggests an explanation for why the theories are not disconfirmed by such evidence. The key to this explanation is an approach to scientific hypotheses that allows their actual content to differ from their apparent (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  23
    General Relativity and the Standard Model: Why evidence for one does not disconfirm the other.Nicholaos Jones - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):124-132.
    General Relativity and the Standard Model often are touted as the most rigorously and extensively confirmed scientific hypotheses of all time. Nonetheless, these theories appear to have consequences that are inconsistent with evidence about phenomena for which, respectively, quantum effects and gravity matter. This paper suggests an explanation for why the theories are not disconfirmed by such evidence. The key to this explanation is an approach to scientific hypotheses that allows their actual content to differ from their apparent (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  25
    A Finslerian extension of general relativity.G. S. Asanov - 1981 - Foundations of Physics 11 (1-2):137-154.
    A Finslerian extension of general relativity is examined with particular emphasis on the Finslerian generalization of the equation of motion in a gravitational field. The construction of a gravitational Lagrangian density by substituting the osculating Riemannian metric tensor in the Einstein density is studied. Attention is drawn to an interesting possibility for developing the theory of test bodies against the Finslerian background.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. The Genesis of General Relativity: Interaction between Einstein’s, Abraham’s and Nordström’s Research Programmes.Rinat M. Nugayev - 2017 - Kairos 19 (1):134-169.
    The arguments are exhibited in favour of the necessity to modify the history of the genesis and advancement of general relativity (GR). I demonstrate that the dynamic creation of GR had been continually governed by internal tensions between two research traditions, that of special relativity and Newton’s gravity. The encounter of the traditions and their interpenetration entailed construction of the hybrid domain at first with an irregular set of theoretical models. Step by step, on eliminating the contradictions (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  46. Special and General Relativity based on the Physical Meaning of the Spacetime Interval.Alan Macdonald - manuscript
    We outline a simple development of special and general relativity based on the physical meaning of the spacetime interval. The Lorentz transformation is not used.
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  7
    General Relativity, Cosmology and Astrophysics: Perspectives 100 years after Einstein's stay in Prague.Jiří Bičák & Tomáš Ledvinka (eds.) - 2014 - Cham: Imprint: Springer.
    The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  48.  75
    Early philosophical interpretations of general relativity.Thomas A. Ryckman - 2008 - Stanford Encyclopedia of Philosophy.
  49.  28
    Is General Relativity Generally Relativistic?Roger Jones - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:363 - 381.
    Among the principles that are generally taken to underlie the general theory of relativity is a general principle of relativity. Such a principle is supposed to extend the special principle of relativity, which holds observers in uniform motion to be indistinguishable by appeal to the laws of physics, to a requirement on observers in arbitrary states of motion. Starting with physical intuitions described graphically by Galileo, proceeding through a series of formal requirements on reference frames (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  50. Some pre-history of general relativity.Howard Stein - 1977 - In John Earman, Clark Glymour & John Stachel (eds.), Foundations of Space-Time Theories. University of Minnesota Press.
     
    Export citation  
     
    Bookmark   16 citations  
1 — 50 / 1000