Order:
  1.  22
    Drosophila Hox complex downstream targets and the function of homeotic genes.Yacine Graba, Denise Aragnol & Jacques Pradel - 1997 - Bioessays 19 (5):379-388.
    Hox complex genes are key developmental regulators highly conserved throughout evolution. The encoded proteins share a 60‐amino‐acid DNA‐binding motif, the homeodomain, and function as transcription factors to control axial patterning. An important question concerns the nature and function of genes acting downstream of Hox proteins. This review focuses on Drosophila, as little is known about this question in other organisms. The noticeable progress gained in the field during the past few years has significantly improved our current understanding of how Hox (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  32
    Classification of sequence signatures: a guide to Hox protein function.Samir Merabet, Bruno Hudry, Mehdi Saadaoui & Yacine Graba - 2009 - Bioessays 31 (5):500-511.
    Hox proteins are part of the conserved superfamily of homeodomain‐containing transcription factors and play fundamental roles in shaping animal body plans in development and evolution. However, molecular mechanisms underlying their diverse and specific biological functions remain largely enigmatic. Here, we have analyzed Hox sequences from the main evolutionary branches of the Bilateria group. We have found that four classes of Hox protein signatures exist, which together provide sufficient support to explain how different Hox proteins differ in their control and function. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  26
    Control of DNA replication: A new facet of Hox proteins?Benoit Miotto & Yacine Graba - 2010 - Bioessays 32 (9):800-807.
    Hox proteins are well‐known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox‐mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  21
    Hox functional diversity: Novel insights from flexible motif folding and plastic protein interaction.Miguel Ortiz-Lombardia, Nicolas Foos, Corinne Maurel-Zaffran, Andrew J. Saurin & Yacine Graba - 2017 - Bioessays 39 (4):1600246.
    How the formidable diversity of forms emerges from developmental and evolutionary processes is one of the most fascinating questions in biology. The homeodomain‐containing Hox proteins were recognized early on as major actors in diversifying animal body plans. The molecular mechanisms underlying how this transcription factor family controls a large array of context‐ and cell‐specific biological functions is, however, still poorly understood. Clues to functional diversity have emerged from studies exploring how Hox protein activity is controlled through interactions with PBC class (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark