Switch to: Citations

Add references

You must login to add references.
  1. Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • Multimo dal Logics of Products of Topologies.J. Van Benthem, G. Bezhanishvili, B. Ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369 - 392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion ${\bf S4}\oplus {\bf S4}$ . We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies. We prove that both of these logics are complete for the product of rational numbers ${\Bbb Q}\times {\Bbb Q}$ (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • Multimo dal logics of products of topologies.J. van Benthem, G. Bezhanishvili, B. ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Multimo dal Logics of Products of Topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Mathematics of Metamathematics.Donald Monk - 1963 - Journal of Symbolic Logic 32 (2):274-275.
    Direct download  
     
    Export citation  
     
    Bookmark   96 citations  
  • A Proof Of Topological Completeness For S4 In.Giorgi Mints & Ting Zhang - 2005 - Annals of Pure and Applied Logic 133 (1-3):231-245.
    The completeness of the modal logic S4 for all topological spaces as well as for the real line, the n-dimensional Euclidean space and the segment etc. was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure for S4 into a subspace of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • A proof of topological completeness for S4 in.Grigori Mints & Ting Zhang - 2005 - Annals of Pure and Applied Logic 133 (1-3):231-245.
    The completeness of the modal logic S4 for all topological spaces as well as for the real line , the n-dimensional Euclidean space and the segment etc. was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure for S4 into a subspace (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • A solution of the decision problem for the Lewis systems s2 and s4, with an application to topology.J. C. C. McKinsey - 1941 - Journal of Symbolic Logic 6 (4):117-134.
  • On Some Completeness Theorems in Modal Logic.D. Makinson - 1966 - Mathematical Logic Quarterly 12 (1):379-384.
    Gives the first published adaptation of the Lindenbaum/Henkin method of maximal consistent sets for establishing the completeness of modal propositional logics with respect to the relational models of Kripke.
    Direct download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Completeness of S4 for the Lebesgue Measure Algebra.Tamar Lando - 2012 - Journal of Philosophical Logic 41 (2):287-316.
    We prove completeness of the propositional modal logic S 4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and . Propositional modal formulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1], modulo sets of measure zero. Equivalence classes of Lebesgue-measurable subsets form a measure algebra, , and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dynamic topological logic.Philip Kremer & Grigori Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
    Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  • Dynamic topological logic.Philip Kremer & Giorgi Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
    Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Diodorean modality in Minkowski spacetime.Robert Goldblatt - 1980 - Studia Logica 39 (2-3):219 - 236.
    The Diodorean interpretation of modality reads the operator as it is now and always will be the case that. In this paper time is modelled by the four-dimensional Minkowskian geometry that forms the basis of Einstein's special theory of relativity, with event y coming after event x just in case a signal can be sent from x to y at a speed at most that of the speed of light (so that y is in the causal future of x).It is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  • An ascending chain of S4 logics.Kit Fine - 1974 - Theoria 40 (2):110-116.
  • The incompleteness of s4 ⊕ s4 for the product space R × R.Philip Kremer - unknown
    Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊕ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations