# Boolean-Like Algebras of Finite Dimension: From Boolean Products to Semiring Products

In Jacek Malinowski & Rafał Palczewski (eds.), Janusz Czelakowski on Logical Consequence. Springer Verlag. pp. 377-400 (2024)

# Abstract

We continue the investigation, initiated in Salibra et al. (Found Sci, 2020), of Boolean-like algebras of dimension n (nBA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\textrm{BA}$$\end{document}s), algebras having n constants e1,⋯,en\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf e_1,\dots,\mathsf e_n$$\end{document}, and an (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-ary operation q (a “generalised if-then-else”) that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of nBA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\textrm{BA}$$\end{document}s share many remarkable properties with the variety of Boolean algebras and with primal varieties. Putting to good use the concept of a central element, we extend the Boolean power construction to that of a semiring power and we prove two representation theorems: (i) Any pure nBA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\textrm{BA}$$\end{document} is isomorphic to the algebra of n-central elements of a Boolean vector space; (ii) Any member of a variety of nBAs with one generator is isomorphic to a Boolean power of this generator. This yields a new proof of Foster’s theorem on primal varieties.

# Other Versions

No versions found

## PhilArchive

Upload a copy of this work     Papers currently archived: 95,134

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
On the Representation of Boolean Magmas and Boolean Semilattices.Peter Jipsen, M. Eyad Kurd-Misto & James Wimberley - 2021 - Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic:289-312.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.

2024-03-13

5 (#1,598,932)

6 months
5 (#888,331)