The strict-tolerant approach to paradox promises to erect theories of naïve truth and tolerant vagueness on the firm bedrock of classical logic. We assess the extent to which this claim is founded. Building on some results by Girard we show that the usual proof-theoretic formulation of propositional ST in terms of the classical sequent calculus without primitive Cut is incomplete with respect to ST-valid metainferences, and exhibit a complete calculus for the same class of metainferences. We also argue that the (...) latter calculus, far from coinciding with classical logic, is a close kin of Priest’s LP. (shrink)
We group the existing variants of the familiar set-theoretical and truth-theoretical paradoxes into two classes: connective paradoxes, which can in principle be ascribed to the presence of a contracting connective of some sort, and structural paradoxes, where at most the faulty use of a structural inference rule can possibly be blamed. We impute the former to an equivocation over the meaning of logical constants, and the latter to an equivocation over the notion of consequence. Both equivocation sources are tightly related, (...) and can be cleared up by adopting a particular substructural logic in place of classical logic. We then argue that our perspective can be justified via an informational semantics of contraction-free substructural logics. (shrink)
The aim of the present book is to give a comprehensive account of the ‘state of the art’ of substructural logics, focusing both on their proof theory and on their semantics (both algebraic and relational. It is for graduate students in either philosophy, mathematics, theoretical computer science or theoretical linguistics as well as specialists and researchers.
Proof-theoretic semantics is an alternative to model-theoretic semantics. It aims at explaining the meaning of the logical constants in terms of the inference rules that govern their behaviour in proofs. We argue that this must be construed as the task of explaining these meanings relative to a logic, i.e., to a consequence relation. Alas, there is no agreed set of properties that a relation must have in order to qualify as a consequence relation. Moreover, the association of a consequence relation (...) to a logical calculus is not as straightforward as it may seem. We show that these facts are problematic for the proof-theoretic project but the problems can be solved. Our thesis is that the consequence relation relevant for proof-theoretic semantics is the one given by the sequent-to-sequent derivability relation in Gentzen systems. (shrink)
Paraconsistent Weak Kleene logic is the 3-valued logic with two designated values defined through the weak Kleene tables. This paper is a first attempt to investigate PWK within the perspective and methods of abstract algebraic logic. We give a Hilbert-style system for PWK and prove a normal form theorem. We examine some algebraic structures for PWK, called involutive bisemilattices, showing that they are distributive as bisemilattices and that they form a variety, \, generated by the 3-element algebra WK; we also (...) prove that every involutive bisemilattice is representable as the Płonka sum over a direct system of Boolean algebras. We then study PWK from the viewpoint of AAL. We show that \ is not the equivalent algebraic semantics of any algebraisable logic and that PWK is neither protoalgebraic nor selfextensional, not assertional, but it is truth-equational. We fully characterise the deductive filters of PWK on members of \ and the reduced matrix models of PWK. Finally, we investigate PWK with the methods of second-order AAL—we describe the class \ of PWK-algebras, algebra reducts of basic full generalised matrix models of PWK, showing that they coincide with the quasivariety generated by WK—which differs from \—and explicitly providing a quasiequational basis for it. (shrink)
Paraconsistent Weak Kleene Logic is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.
Proof-theoretic semantics is an alternative to model-theoretic semantics. It aims at explaining the meaning of the logical constants in terms of the inference rules that govern their behaviour in proofs. We argue that this must be construed as the task of explaining these meanings relative to a logic, i.e., to a consequence relation. Alas, there is no agreed set of properties that a relation must have in order to qualify as a consequence relation. Moreover, the association of a consequence relation (...) to a logical calculus is not as straightforward as it may seem. We show that these facts are problematic for the proof-theoretic project but the problems can be solved. Our thesis is that the consequence relation relevant for proof-theoretic semantics is the one given by the sequent-to-sequent derivability relation in Gentzen systems. (shrink)
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...) this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more 'big picture' ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics. (shrink)
I discuss paradoxes of implication in the setting of a proof-conditional theory of meaning for logical constants. I argue that a proper logic of implication should be not only relevant, but also constructive and nonmonotonic. This leads me to select as a plausible candidate LL, a fragment of linear logic that differs from R in that it rejects both contraction and distribution.
Dave Ripley has recently argued against the plausibility of multiset consequence relations and of contraction-free approaches to paradox. For Ripley, who endorses a nontransitive theory, the best arguments that buttress transitivity also push for contraction—whence it is wiser for the substructural logician to go nontransitive from the start. One of Ripley’s allegations is especially insidious, since it assumes the form of a trivialisation result: it is shown that if a multiset consequence relation can be associated to a closure operator in (...) the expected way, then it necessarily contracts. We counter Ripley’s objection by presenting an approach to multiset consequence that escapes this trap. This approach is multiple-conclusioned in a heterodox way, for multiple succedents are given a conjunctive, rather than a disjunctive reading. Finally, we address a further objection by French and Ripley to the effect that the informational interpretation of sequents in linear logic does not motivate cut. (shrink)
The logic DAI of demodalised analytic implication has been introduced by J.M. Dunn as a variation on a time-honoured logical system by C.I. Lewis’ student W.T. Parry. The main tenet underlying this logic is that no implication can be valid unless its consequent is “analytically contained” in its antecedent. DAI has been investigated both proof-theoretically and model-theoretically, but no study so far has focussed on DAI from the viewpoint of abstract algebraic logic. We provide several different algebraic semantics for DAI, (...) showing their equivalence with the known semantics by Dunn and Epstein. We also show that DAI is algebraisable and we identify its equivalent quasivariety semantics. This class turns out to be a linguistic and axiomatic expansion of involutive bisemilattices, a subquasivariety of which forms the algebraic counterpart of Paraconsistent Weak Kleene logic. This fact sheds further light on the relationship between containment logics and logics of nonsense. (shrink)
In a famous and controversial paper, B. H. Slater has argued against the possibility of paraconsistent logics. Our reply is centred on the distinction between two aspects of the meaning of a logical constant *c* in a given logic: its operational meaning, given by the operational rules for *c* in a cut-free sequent calculus for the logic at issue, and its global meaning, specified by the sequents containing *c* which can be proved in the same calculus. Subsequently, we use the (...) same strategy to counter Quine's meaning variance argument against deviant logics. In a nutshell, we claim that genuine rivalry between (similar) logics *L* and *L'* is possible whenever each constant in *L* has the same operational meaning as its counterpart in *L'* although differences in global meaning arise in at least one case. (shrink)
We consider the class of pointed varieties of algebras having a lattice term reduct and we show that each such variety gives rise in a natural way, and according to a regular pattern, to at least three interesting logics. Although the mentioned class includes several logically and algebraically significant examples (e.g. Boolean algebras, MV algebras, Boolean algebras with operators, residuated lattices and their subvarieties, algebras from quantum logic or from depth relevant logic), we consider here in greater detail Abelian ℓ-groups, (...) where such logics respectively correspond to: i) Meyer and Slaney’s Abelian logic [31]; ii) Galli et al.’s logic of equilibrium [21]; iii) a new logic of “preservation of truth degrees”. (shrink)
In the tradition of substructural logics, it has been claimed for a long time that conjunction and inclusive disjunction are ambiguous:we should, in fact, distinguish between ‘lattice’ connectives (also called additive or extensional) and ‘group’ connectives (also called multiplicative or intensional). We argue that an analogous ambiguity affects the quantifiers. Moreover, we show how such a perspective could yield solutions for two well-known logical puzzles: McGee’s counterexample to modus ponens and the lottery paradox.
We introduce a generalization of MV algebras motivated by the investigations into the structure of quantum logical gates. After laying down the foundations of the structure theory for such quasi-MV algebras, we show that every quasi-MV algebra is embeddable into the direct product of an MV algebra and a “flat” quasi-MV algebra, and prove a completeness result w.r.t. a standard quasi-MV algebra over the complex numbers.
Here, we discuss historical, philosophical and technical problems associated with relating logic and relating semantics. To do so, we proceed in three steps. First, Section 1 is devoted to providing an introduction to both relating logic and relating semantics. Second, we address the history of relating semantics and some of the main research directions and their philosophical applications. Third, we discuss some technical problems related to relating semantics, particularly whether the direct incorporation of the relation into the language of relating (...) logic is needed. The starting point for our considerations presented here is the 1st Workshop On Relating Logic and the selected papers for this issue. (shrink)
The aim of this article is to discuss pure variable inclusion logics, that is, logical systems where valid entailments require that the propositional variables occurring in the conclusion are included among those appearing in the premises, or vice versa. We study the subsystems of Classical Logic satisfying these requirements and assess the extent to which it is possible to characterise them by means of a single logical matrix. In addition, we semantically describe both of these companions to Classical Logic in (...) terms of appropriate matrix bundles and as semilattice-based logics, showing that the notion of consequence in these logics can be interpreted in terms of truth (or non-falsity) and meaningfulness (or meaninglessness) preservation. Finally, we use Płonka sums of matrices to investigate the pure variable inclusion companions of an arbitrary finitary logic. -/- . (shrink)
In this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley's multiple conclusion systems (...) for classical logic and Girard's proofnets for linear logic. (shrink)
Paraconsistent weak Kleene logic is the $3$-valued logic based on the weak Kleene matrices and with two designated values. In this paper, we investigate the poset of prevarieties of generalized involutive bisemilattices, focussing in particular on the order ideal generated by Α$\textrm{lg} $. Applying to this poset a general result by Alexej Pynko, we prove that, exactly like Priest’s logic of paradox, $\textrm{PWK}$ has only one proper nontrivial extension apart from classical logic: $\textrm{PWK}_{\textrm{E}}\textrm{,}$ PWK logic plus explosion. This $6$-valued logic, (...) unlike $\textrm{PWK} $, fails to be paraconsistent. We describe its consequence relation via a variable inclusion criterion and identify its Suszko-reduced models. (shrink)
We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
We generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariablyaggregatedvia set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. (...) In their abstract form, thus,deductive relationsare defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic. (shrink)
We investigate an expansion of quasi-MV algebras ([10]) by a genuine quantum unary operator. The variety of such quasi-MV algebras has a subquasivariety whose members—called cartesian—can be obtained in an appropriate way out of MV algebras. After showing that cartesian . quasi-MV algebras generate ,we prove a standard completeness theorem for w.r.t. an algebra over the complex numbers.
We investigate some properties of two varieties of algebras arising from quantum computation - quasi-MV algebras and $\sqrt{^{\prime }}$ quasi-MV algebras - first introduced in \cite{Ledda et al. 2006}, \cite{Giuntini et al. 200+} and tightly connected with fuzzy logic. We establish the finite model property and the congruence extension property for both varieties; we characterize the quasi-MV reducts and subreducts of $\sqrt{^{\prime }}$ quasi-MV algebras; we give a representation of semisimple $\sqrt{^{\prime }}$ quasi-MV algebras in terms of algebras of functions; (...) finally, we describe the structure of free algebras with one generator in both varieties. (shrink)
Varieties like groups, rings, or Boolean algebras have the property that, in any of their members, the lattice of congruences is isomorphic to a lattice of more manageable objects, for example normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras.algebraic logic can explain these phenomena at a rather satisfactory level of generality: in every member A of a τ-regular variety the lattice of congruences of A is isomorphic to the lattice of deductive filters on (...) A of the τ-assertional logic of . Moreover, if has a constant 1 in its type and is 1-subtractive, the deductive filters on A ∈ of the 1-assertional logic of coincide with the -ideals of A in the sense of Gumm and Ursini, for which we have a manageable concept of ideal generation. However, there are isomorphism theorems, for example, in the theories of residuated lattices, pseudointerior algebras and quasi-MV algebras that cannot be subsumed by these general results. The aim of the present paper is to appropriately generalise the concepts of subtractivity and τ-regularity in such a way as to shed some light on the deep reason behind such theorems. The tools and concepts we develop hereby provide a common umbrella for the algebraic investigation of several families of logics, including substructural logics, modal logics, quantum logics, and logics of constructive mathematics. (shrink)
-autonomous lattices are the algebraic exponentials and without additive constants. In this paper, we investigate the structure theory of this variety and some of its subvarieties, as well as its relationships with other classes of algebras.
We investigate the class of strongly distributive pregroups, a common abstraction of MV-algebras and Abelian l-groups which was introduced by E.Casari. The main result of the paper is a representation theorem which yields both Chang's representation of MV-algebras and Clifford's representation of Abelian l-groups as immediate corollaries.
We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers (...) a calculus for classical logic. (shrink)
Substructural logics are obtained from the sequent calculi for classical or intuitionistic logic by suitably restricting or deleting some or all of the structural rules (Restall, 2000; Ono, 1998). Recently, this field of research has come to encompass a number of logics - e.g. many fuzzy or paraconsistent logics - which had been originally introduced out of different, possibly semantical, motivations. A finer proof-theoretical analysis of such logics, in fact, revealed that it was possible to subsume them under the previous (...) definition (see e.g. Aguzzoli and Ciabattoni, 2000).Although proof systems for substructural logics are currently being investigated with remarkable success, their algebraic models do not seem equally satisfactory. In fact:(i) such structures are often very weak, i.e. they do not possess many interesting algebraic properties;(ii) as a consequence, their theories of ideals, congruences, and representation are as a rule scarcely developed, or even lacking.In this paper, we address these difficulties. (shrink)
A logic is said to be paraconsistent if it doesn’t license you to infer everything from a contradiction. To be precise, let |= be a relation of logical consequence. We call |= explosive if it validates the inference rule: {A,¬A} |= B for every A and B. Classical logic and most other standard logics, including intuitionist logic, are explosive. Instead of licensing you to infer everything from a contradiction, paraconsistent logic allows you to sensibly deal with the contradiction.
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. -/- Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over (...) the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. -/- This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics. (shrink)
We continue our investigation of paraorthomodular BZ*-lattices PBZ*-lattices, started in Giuntini et al., Mureşan. We shed further light on the structure of the subvariety lattice of the variety PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {PBZL}^{\mathbb {*}}$$\end{document} of PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–lattices; in particular, we provide axiomatic bases for some of its members. Further, we show that some distributive subvarieties of PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {PBZL}^{\mathbb (...) {*}}$$\end{document} are term-equivalent to well-known varieties of expanded KleeneKleene, C. lattices or of nonclassical modal algebrasNonclassical modal algebras. By so doing, we somehow help the reader to locate PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–lattices on the atlas of algebraic structures for nonclassical logics. (shrink)
Phase models for affine linear logic were independently devised by Lafont [10] and Piazza [15], although foreshadowed by Ono [14]. However, the existing semantics either contain no explicit directions for the construction of models in the general case, or else are forced to resort to additional conditions extending Girard's semantics. We dispense with these extra postulates - at least for the subexponential fragment of this logic - considering structures where the set of antiphases is concretely constructed. Moreover, we show the (...) equivalence of our phase models and the algebraic models of affine linear logic by means of a representation theorem. (shrink)
Here, we discuss logical, philosophical and technical problems associated to relating logic and relating semantics. To do so, we proceed in three steps. The first step is devoted to providing an introduction to both relating logic and relating semantics. We discuss this problem on the example of different languages. Second, we address some of the main research directions and their philosophical applications to non-classical logics, particularly to connexive logics. Third, we discuss some technical problems related to relating semantics, and its (...) application to philosophy of science, language and pragmatics. (shrink)
There is a shortage of natural resources, there is a shortage of breathable air, but there is no shortage of introduction to logic books. Still, this volume displays a masterly combination of clari...
In this paper, we axiomatize the first-degree entailments of relatedness logic, and introduce both tabular and algebraic semantics for such a fragment. Thereby, we partly answer the problems referred to as P1 and P28 in the Problem Section of this journal.Back to Main Menu.