Abstract
A novel explanation of belief bias in relational reasoning is presented based on the role of working memory and retrieval in deductive reasoning, and the influence of prior knowledge on this process. It is proposed that belief bias is caused by the believability of a conclusion in working memory which influences its activation level, determining its likelihood of retrieval and therefore its effect on the reasoning process. This theory explores two main influences of belief on the activation levels of these conclusions. First, believable conclusions have higher activation levels and so are more likely to be recalled during the evaluation of reasoning problems than unbelievable conclusions, and therefore, they have a greater influence on the reasoning process. Secondly, prior beliefs about the conclusion have a base level of activation and may be retrieved when logically irrelevant, influencing the evaluation of the problem. The theory of activation and memory is derived from the Atomic Components of Thought-Rational (ACT-R) cognitive architecture and so this account is formalized in an ACT-R cognitive model. Two experiments were conducted to test predictions of this model. Experiment 1 tested strength of belief and Experiment 2 tested the impact of a concurrent working memory load. Both of these manipulations increased the main effect of belief overall and in particular raised belief-based responding in indeterminately invalid problems. These effects support the idea that the activation level of conclusions formed during reasoning influences belief bias. This theory adds to current explanations of belief bias by providing a detailed specification of the role of working memory and how it is influenced by prior knowledge