Results for 'cytonuclear'

4 found
Order:
  1.  53
    Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes.Jui-Yu Chou & Jun-Yi Leu - 2010 - Bioessays 32 (5):401-411.
    Several features of the yeast mitochondrial genome, including high mutation rate, dynamic genomic structure, small effective population size, and dispensability for cellular viability, make it a promising candidate for generating hybrid incompatibility and driving speciation. Cytonuclear incompatibility, a specific type of Dobzhansky‐Muller genetic incompatibility caused by improper interactions between mitochondrial and nuclear genomes, has previously been observed in a variety of organisms, yet its role in speciation remains obscure. Recent studies in Saccharomyces yeast species provide a new insight, with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  23
    The evolution of sex: A new hypothesis based on mitochondrial mutational erosion.Justin C. Havird, Matthew D. Hall & Damian K. Dowling - 2015 - Bioessays 37 (9):951-958.
    The evolution of sex in eukaryotes represents a paradox, given the “twofold” fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high‐mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA‐encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3.  3
    The role of mitochondrial respiration in physiological and evolutionary adaptation.Jayatri Das - 2006 - Bioessays 28 (9):890-901.
    Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine‐initiated signaling pathways allow organisms to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  4
    A tale of two genomes: What drives mitonuclear discordance in asexual lineages of a freshwater snail?Maurine Neiman & Joel Sharbrough - 2023 - Bioessays 45 (6):2200234.
    We use genomic information to tell us stories of evolutionary origins. But what does it mean when different genomes report wildly different accounts of lineage history? This genomic “discordance” can be a consequence of a fascinating suite of natural history and evolutionary phenomena, from the different inheritance mechanisms of nuclear versus cytoplasmic (mitochondrial and plastid) genomes to hybridization and introgression to horizontal transfer. Here, we explore how we can use these distinct genomic stories to provide new insights into the maintenance (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark