In this paper, we investigate the use of event models for automated planning. Event models are the action defining structures used to define a semantics for dynamic epistemic logic. Using event models, two issues in planning can be addressed: Partial observability of the environment and knowledge. In planning, partial observability gives rise to an uncertainty about the world. For single-agent domains, this uncertainty can come from incomplete knowledge of the starting situation and from the nondeterminism of actions. In multi-agent domains, (...) an additional uncertainty arises from the fact that other agents can act in the world, causing changes that are not instigated by the agent itself. For an agent to successfully construct and execute plans in an uncertain environment, the most widely used formalism in the literature on automated planning is “belief states”: sets of different alternatives for the current state of the world. Epistemic logic is a significantly more expressive and theoretically better founded method for representing knowledge and ignorance about the world. Further, epistemic logic allows for planning according to the knowledge of other agents, allowing the specification of a more complex class of planning domains, than those simply concerned with simple facts about the world. We show how to model multi-agent planning problems using Kripke-models for representing world states, and event models for representing actions. Our mechanism makes use of slight modifications to these concepts, in order to model the internal view of agents, rather than that of an external observer. We define a type of planning domain called epistemic planning domains, a generalisation of classical planning domains, and show how epistemic planning can successfully deal with partial observability, nondeterminism, knowledge and multiple agents. Finally, we show epistemic planning to be decidable in the single-agent case, but only semi-decidable in the multi-agent case. (shrink)
In this paper we show how to formalise false-belief tasks like the Sally-Anne task and the second-order chocolate task in Dynamic Epistemic Logic. False-belief tasks are used to test the strength of the Theory of Mind of humans, that is, a human’s ability to attribute mental states to other agents. Having a ToM is known to be essential to human social intelligence, and hence likely to be essential to social intelligence of artificial agents as well. It is therefore important to (...) find ways of implementing a ToM in artificial agents, and to show that such agents can then solve false-belief tasks. In this paper, the approach is to use DEL as a formal framework for representing ToM, and use reasoning in DEL to solve false-belief tasks. In addition to formalising several false-belief tasks in DEL, the paper introduces some extensions of DEL itself: edge-conditioned event models and observability propositions. These extensions are introduced to provide better formalisations of the false-belief tasks, but expected to have independent future interest. (shrink)
Plausibility models are Kripke models that agents use to reason about knowledge and belief, both of themselves and of each other. Such models are used to interpret the notions of conditional belief, degrees of belief, and safe belief. The logic of conditional belief contains that modality and also the knowledge modality, and similarly for the logic of degrees of belief and the logic of safe belief. With respect to these logics, plausibility models may contain too much information. A proper notion (...) of bisimulation is required that characterises them. We define that notion of bisimulation and prove the required characterisations: on the class of image-finite and preimage-finite models, two pointed Kripke models are modally equivalent in either of the three logics, if and only if they are bisimilar. As a result, the information content of such a model can be similarly expressed in the logic of conditional belief, or the logic of degrees of belief, or that of safe belief. This, we found a surprising result. Still, that does not mean that the logics are equally expressive: the logics of conditional and degrees of belief are incomparable, the logics of degrees of belief and safe belief are incomparable, while the logic of safe belief is more expressive than the logic of conditional belief. In view of the result on bisimulation characterisation, this is an equally surprising result. We hope our insights may contribute to the growing community of formal epistemology and on the relation between qualitative and quantitative modelling. (shrink)
Plausibility models are Kripke models that agents use to reason about knowledge and belief, both of themselves and of each other. Such models are used to interpret the notions of conditional belief, degrees of belief, and safe belief. The logic of conditional belief contains that modality and also the knowledge modality, and similarly for the logic of degrees of belief and the logic of safe belief. With respect to these logics, plausibility models may contain too much information. A proper notion (...) of bisimulation is required that characterises them. We define that notion of bisimulation and prove the required characterisations: on the class of image-finite and preimage-finite models, two pointed Kripke models are modally equivalent in either of the three logics, if and only if they are bisimilar. As a result, the information content of such a model can be similarly expressed in the logic of conditional belief, or the logic of degrees of belief, or that of safe belief. This, we found a surprising result. Still, that does not mean that the logics are equally expressive: the logics of conditional and degrees of belief are incomparable, the logics of degrees of belief and safe belief are incomparable, while the logic of safe belief is more expressive than the logic of conditional belief. In view of the result on bisimulation characterisation, this is an equally surprising result. We hope our insights may contribute to the growing community of formal epistemology and on the relation between qualitative and quantitative modelling. (shrink)
An anthology of previously unpublished essays from some of the most outstanding scholars working in philosophy, mathematics, and computer science today, _Self-Reference_ reexamines the latest theories of self-reference, including those that attempt to explain and resolve the semantic and set-theoretic paradoxes. With a thorough introduction that contextualizes the subject for students, this book will be important reading for anyone interested in the general area of self-reference and philosophy.
An anthology of previously unpublished essays from some of the most outstanding scholars working in philosophy, mathematics, and computer science today, _Self-Reference_ reexamines the latest theories of self-reference, including those that attempt to explain and resolve the semantic and set-theoretic paradoxes. With a thorough introduction that contextualizes the subject for students, this book will be important reading for anyone interested in the general area of self-reference and philosophy.
In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained (...) in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise. (shrink)
In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained (...) in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise. (shrink)
We present a logic which we call Hybrid Duration Calculus. HDC is obtained by adding the following hybrid logical machinery to the Restricted Duration Calculus : nominals, satisfaction operators, down-arrow binder, and the global modality. RDC is known to be decidable, and in this paper we show that decidability is retained when adding the hybrid logical machinery. Decidability of HDC is shown by reducing the satisfiability problem to satisfiability of Monadic Second-Order Theory of Order. We illustrate the increased expressive power (...) obtained in hybridizing RDC by showing that HDC, in contrast to RDC, can express all of the 13 possible relations between intervals. (shrink)