32 found
Order:
Disambiguations
Rodney G. Downey [27]Rodney Downey [7]Rodney& Griffiths Downey [1]
  1.  17
    Computably Compact Metric Spaces.Rodney G. Downey & Alexander G. Melnikov - 2023 - Bulletin of Symbolic Logic 29 (2):170-263.
    We give a systematic technical exposition of the foundations of the theory of computably compact metric spaces. We discover several new characterizations of computable compactness and apply these characterizations to prove new results in computable analysis and effective topology. We also apply the technique of computable compactness to give new and less combinatorially involved proofs of known results from the literature. Some of these results do not have computable compactness or compact spaces in their statements, and thus these applications are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  29
    Countable thin Π01 classes.Douglas Cenzer, Rodney Downey, Carl Jockusch & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 59 (2):79-139.
    Cenzer, D., R. Downey, C. Jockusch and R.A. Shore, Countable thin Π01 classes, Annals of Pure and Applied Logic 59 79–139. A Π01 class P {0, 1}ω is thin if every Π01 subclass of P is the intersection of P with some clopen set. Countable thin Π01 classes are constructed having arbitrary recursive Cantor- Bendixson rank. A thin Π01 class P is constructed with a unique nonisolated point A and furthermore A is of degree 0’. It is shown that no (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  3.  39
    Asymptotic density and computably enumerable sets.Rodney G. Downey, Carl G. Jockusch & Paul E. Schupp - 2013 - Journal of Mathematical Logic 13 (2):1350005.
    We study connections between classical asymptotic density, computability and computable enumerability. In an earlier paper, the second two authors proved that there is a computably enumerable set A of density 1 with no computable subset of density 1. In the current paper, we extend this result in three different ways: The degrees of such sets A are precisely the nonlow c.e. degrees. There is a c.e. set A of density 1 with no computable subset of nonzero density. There is a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  4.  57
    Highness and bounding minimal pairs.Rodney G. Downey, Steffen Lempp & Richard A. Shore - 1993 - Mathematical Logic Quarterly 39 (1):475-491.
  5.  30
    Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
    Schnorr randomness is a notion of algorithmic randomness for real numbers closely related to Martin-Löf randomness. After its initial development in the 1970s the notion received considerably less attention than Martin-Löf randomness, but recently interest has increased in a range of randomness concepts. In this article, we explore the properties of Schnorr random reals, and in particular the c.e. Schnorr random reals. We show that there are c.e. reals that are Schnorr random but not Martin-Löf random, and provide a new (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  6.  23
    Abelian p-groups and the Halting problem.Rodney Downey, Alexander G. Melnikov & Keng Meng Ng - 2016 - Annals of Pure and Applied Logic 167 (11):1123-1138.
  7.  37
    The Kolmogorov complexity of random reals.Liang Yu, Decheng Ding & Rodney Downey - 2004 - Annals of Pure and Applied Logic 129 (1-3):163-180.
    We investigate the initial segment complexity of random reals. Let K denote prefix-free Kolmogorov complexity. A natural measure of the relative randomness of two reals α and β is to compare complexity K and K. It is well-known that a real α is 1-random iff there is a constant c such that for all n, Kn−c. We ask the question, what else can be said about the initial segment complexity of random reals. Thus, we study the fine behaviour of K (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  8.  32
    A Friedberg enumeration of equivalence structures.Rodney G. Downey, Alexander G. Melnikov & Keng Meng Ng - 2017 - Journal of Mathematical Logic 17 (2):1750008.
    We solve a problem posed by Goncharov and Knight 639–681, 757]). More specifically, we produce an effective Friedberg enumeration of computable equivalence structures, up to isomorphism. We also prove that there exists an effective Friedberg enumeration of all isomorphism types of infinite computable equivalence structures.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  20
    Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogues.Karl A. Abrahamson, Rodney G. Downey & Michael R. Fellows - 1995 - Annals of Pure and Applied Logic 73 (3):235-276.
    We describe new results in parametrized complexity theory. In particular, we prove a number of concrete hardness results for W[P], the top level of the hardness hierarchy introduced by Downey and Fellows in a series of earlier papers. We also study the parametrized complexity of analogues of PSPACE via certain natural problems concerning k-move games. Finally, we examine several aspects of the structural complexity of W [P] and related classes. For instance, we show that W[P] can be characterized in terms (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  10.  73
    Space complexity of Abelian groups.Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel & Zia Uddin - 2009 - Archive for Mathematical Logic 48 (1):115-140.
    We develop a theory of LOGSPACE structures and apply it to construct a number of examples of Abelian Groups which have LOGSPACE presentations. We show that all computable torsion Abelian groups have LOGSPACE presentations and we show that the groups ${\mathbb {Z}, Z(p^{\infty})}$ , and the additive group of the rationals have LOGSPACE presentations over a standard universe such as the tally representation and the binary representation of the natural numbers. We also study the effective categoricity of such groups. For (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11.  21
    On Choice Sets and Strongly Non‐Trivial Self‐Embeddings of Recursive Linear Orders.Rodney G. Downey & Michael F. Moses - 1989 - Mathematical Logic Quarterly 35 (3):237-246.
  12.  36
    On Choice Sets and Strongly Non-Trivial Self-Embeddings of Recursive Linear Orders.Rodney G. Downey & Michael F. Moses - 1989 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 35 (3):237-246.
  13.  68
    Decidability and Computability of Certain Torsion-Free Abelian Groups.Rodney G. Downey, Sergei S. Goncharov, Asher M. Kach, Julia F. Knight, Oleg V. Kudinov, Alexander G. Melnikov & Daniel Turetsky - 2010 - Notre Dame Journal of Formal Logic 51 (1):85-96.
    We study completely decomposable torsion-free abelian groups of the form $\mathcal{G}_S := \oplus_{n \in S} \mathbb{Q}_{p_n}$ for sets $S \subseteq \omega$. We show that $\mathcal{G}_S$has a decidable copy if and only if S is $\Sigma^0_2$and has a computable copy if and only if S is $\Sigma^0_3$.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  78
    On Computable Self-Embeddings of Computable Linear Orderings.Rodney G. Downey, Bart Kastermans & Steffen Lempp - 2009 - Journal of Symbolic Logic 74 (4):1352 - 1366.
    We solve a longstanding question of Rosenstein, and make progress toward solving a longstanding open problem in the area of computable linear orderings by showing that every computable ƞ-like linear ordering without an infinite strongly ƞ-like interval has a computable copy without nontrivial computable self-embedding. The precise characterization of those computable linear orderings which have computable copies without nontrivial computable self-embedding remains open.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  72
    The complexity of orbits of computably enumerable sets.Peter A. Cholak, Rodney Downey & Leo A. Harrington - 2008 - Bulletin of Symbolic Logic 14 (1):69 - 87.
    The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, ε, such that the question of membership in this orbit is ${\Sigma _1^1 }$ -complete. This result and proof have a number of nice corollaries: the Scott rank of ε is $\omega _1^{{\rm{CK}}}$ + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of ε; for all finite α ≥ 9, there is a properly $\Delta (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  29
    On self-embeddings of computable linear orderings.Rodney G. Downey, Carl Jockusch & Joseph S. Miller - 2006 - Annals of Pure and Applied Logic 138 (1):52-76.
    The Dushnik–Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine computability-theoretical aspects of this classical theorem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  18
    The members of thin and minimal Π 1 0 classes, their ranks and Turing degrees.Rodney G. Downey, Guohua Wu & Yue Yang - 2015 - Annals of Pure and Applied Logic 166 (7-8):755-766.
  18. Decomposition and infima in the computably enumerable degrees.Rodney G. Downey, Geoffrey L. Laforte & Richard A. Shore - 2003 - Journal of Symbolic Logic 68 (2):551-579.
    Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c = (a ⋃ c) ⋂ (b ⋃ c), a ⋃ c | b ⋃ c, and c < a ⋃ b.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  22
    Advice classes of parameterized tractability.Liming Cai, Jianer Chen, Rodney G. Downey & Michael R. Fellows - 1997 - Annals of Pure and Applied Logic 84 (1):119-138.
    Many natural computational problems have input consisting of two or more parts, one of which may be considered a parameter. For example, there are many problems for which the input consists of a graph and a positive integer. A number of results are presented concerning parameterized problems that can be solved in complexity classes below P, given a single word of advice for each parameter value. Different ways in which the word of advice can be employed are considered, and it (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  45
    On the parameterized complexity of short computation and factorization.Liming Cai, Jianer Chen, Rodney G. Downey & Michael R. Fellows - 1997 - Archive for Mathematical Logic 36 (4-5):321-337.
    A completeness theory for parameterized computational complexity has been studied in a series of recent papers, and has been shown to have many applications in diverse problem domains including familiar graph-theoretic problems, VLSI layout, games, computational biology, cryptography, and computational learning [ADF,BDHW,BFH, DEF,DF1-7,FHW,FK]. We here study the parameterized complexity of two kinds of problems: (1) problems concerning parameterized computations of Turing machines, such as determining whether a nondeterministic machine can reach an accept state in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  7
    A weakly 2-generic which Bounds a minimal degree.Rodney G. Downey & Satyadev Nandakumar - 2019 - Journal of Symbolic Logic 84 (4):1326-1347.
    Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That is, if a is 2-generic, and $0 < {\bf{b}} < {\bf{a}}$, then there is a 2-generic g with $0 < {\bf{g}} < {\bf{b}}.$ In the case of 1-generic degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from a 1-generic degree. We explore the tightness of these results.We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from a weakly 2-generic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  43
    Corrigendum: "On the complexity of the successivity relation in computable linear orderings".Rodney G. Downey, Steffen Lempp & Guohua Wu - 2017 - Journal of Mathematical Logic 17 (2):1792002.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  23.  20
    Degrees containing members of thin Π10 classes are dense and co-dense.Rodney G. Downey, Guohua Wu & Yue Yang - 2018 - Journal of Mathematical Logic 18 (1):1850001.
    In [Countable thin [Formula: see text] classes, Ann. Pure Appl. Logic 59 79–139], Cenzer, Downey, Jockusch and Shore proved the density of degrees containing members of countable thin [Formula: see text] classes. In the same paper, Cenzer et al. also proved the existence of degrees containing no members of thin [Formula: see text] classes. We will prove in this paper that the c.e. degrees containing no members of thin [Formula: see text] classes are dense in the c.e. degrees. We will (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  49
    Euclidean Functions of Computable Euclidean Domains.Rodney G. Downey & Asher M. Kach - 2011 - Notre Dame Journal of Formal Logic 52 (2):163-172.
    We study the complexity of (finitely-valued and transfinitely-valued) Euclidean functions for computable Euclidean domains. We examine both the complexity of the minimal Euclidean function and any Euclidean function. Additionally, we draw some conclusions about the proof-theoretical strength of minimal Euclidean functions in terms of reverse mathematics.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Evan," Schnorr randomness.Rodney& Griffiths Downey - 2004 - Journal of Symbolic Logic 69:2.
    No categories
     
    Export citation  
     
    Bookmark  
  26.  8
    Martin-Löf Randomness Implies Multiple Recurrence in Effectively Closed Sets.Rodney G. Downey, Satyadev Nandakumar & André Nies - 2019 - Notre Dame Journal of Formal Logic 60 (3):491-502.
    This work contributes to the program of studying effective versions of “almost-everywhere” theorems in analysis and ergodic theory via algorithmic randomness. Consider the setting of Cantor space {0,1}N with the uniform measure and the usual shift. We determine the level of randomness needed for a point so that multiple recurrence in the sense of Furstenberg into effectively closed sets P of positive measure holds for iterations starting at the point. This means that for each k∈N there is an n such (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  12
    Nijmegen, The Netherlands July 27–August 2, 2006.Rodney Downey, Ieke Moerdijk, Boban Velickovic, Samson Abramsky, Marat Arslanov, Harvey Friedman, Martin Goldstern, Ehud Hrushovski, Jochen Koenigsmann & Andy Lewis - 2007 - Bulletin of Symbolic Logic 13 (2).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  33
    There is no plus-capping degree.Rodney G. Downey & Steffen Lempp - 1994 - Archive for Mathematical Logic 33 (2):109-119.
    Answering a question of Per Lindström, we show that there is no “plus-capping” degree, i.e. that for any incomplete r.e. degreew, there is an incomplete r.e. degreea>w such that there is no r.e. degreev>w witha∩v=w.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  44
    Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  30.  45
    Corrigendum: ``Contiguity and distributivity in the enumerable Turing degrees''.Rodney G. Downey & Steffen Lempp - 2002 - Journal of Symbolic Logic 67 (4):1579-1580.
  31. Review: Robert I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. [REVIEW]Eberhard Herrmann & Rodney Downey - 1990 - Journal of Symbolic Logic 55 (1):356-357.
  32.  17
    Soare Robert I.. Recursively enumerable sets and degrees. A study of computable functions and computably generated sets. Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987, xviii + 437 pp. [REVIEW]Eberhard Herrmann & Rodney Downey - 1990 - Journal of Symbolic Logic 55 (1):356-357.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark