CZF is an intuitionistic set theory that does not contain Power Set, substituting instead a weaker version, Subset Collection. In this paper a Kripke model of CZF is presented in which Power Set is false. In addition, another Kripke model is presented of CZF with Subset Collection replaced by Exponentiation, in which Subset Collection fails.
In order to build the collection of Cauchy reals as a set in constructive set theory, the only power set-like principle needed is exponentiation. In contrast, the proof that the Dedekind reals form a set has seemed to require more than that. The main purpose here is to show that exponentiation alone does not suffice for the latter, by furnishing a Kripke model of constructive set theory, Constructive Zermelo–Fraenkel set theory with subset collection replaced by exponentiation, in which the Cauchy (...) reals form a set while the Dedekind reals constitute a proper class. (shrink)
Varieties of the Fan Theorem have recently been developed in reverse constructive mathematics, corresponding to different continuity principles. They form a natural implicational hierarchy. Some of the implications have been shown to be strict, others strict in a weak context, and yet others not at all, using disparate techniques. Here we present a family of related Kripke models which separates all of the as yet identified fan theorems.
The regular extension axiom, REA, was first considered by Peter Aczel in the context of Constructive Zermelo-Fraenkel Set Theory as an axiom that ensures the existence of many inductively defined sets. REA has several natural variants. In this note we gather together metamathematical results about these variants from the point of view of both classical and constructive set theory.
A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop-style constructive reverse mathematics.
It is consistent with constructive set theory (without Countable Choice, clearly) that the Cauchy reals (equivalence classes of Cauchy sequences of rationals) are not Cauchy complete. Related results are also shown, such as that a Cauchy sequence of rationals may not have a modulus of convergence, and that a Cauchy sequence of Cauchy sequences may not converge to a Cauchy sequence, among others.
We combine two techniques of set theory relating to minimal degrees of constructibility. Jensen constructed a minimal real which is additionally a Π 1 2 singleton. Groszek built an initial segment of order type 1 + α * , for any ordinal α. This paper shows how to force a Π 1 2 singleton such that the c-degrees beneath it, all represented by reals, are of type 1 + α * , for many ordinals α. We also examine the definability (...) α needs to be so represented by a real. (shrink)
We give the natural topological model for $\neg$BD-${\mathbb N}$, and use it to show that the closure of spaces with the anti-Specker property under product does not imply BD-${\mathbb N}$. Also, the natural topological model for $\neg$BD is presented. Finally, for some of the realizability models known indirectly to falsify BD-$\mathbb{N}$, it is brought out in detail how BD-$\mathbb N$ fails.
Varieties of the Fan Theorem have recently been developed in reverse constructive mathematics, corresponding to different continuity principles. They form a natural implicational hierarchy. Earlier work showed all of these implications to be strict. Here we reprove one of the strictness results, using very different arguments. The technique used is a mixture of realizability, forcing in the guise of Heyting-valued models, and Kripke models.