Results for 'Measurement problem in quantum mechanics'

988 found
Order:
  1.  21
    The measurement problem in quantum mechanics.Alessio Giuseppe Ferraioli & Canio Noce - 2019 - Science and Philosophy 7 (1):41-58.
    In this paper, we discuss the importance of measurement in quantum mechanics and the so-called measurement problem. Any quantum system can be described as a linear combination of eigenstates of an operator representing a physical quantity; this means that the system can be in a superposition of states that corresponds to different eigenvalues, i.e., different physical outcomes, each one incompatible with the others. The measurement process converts a state of superposition in a well-defined (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2. Logical self reference, set theoretical paradoxes and the measurement problem in quantum mechanics.Maria Luisa Dalla Chiara - 1977 - Journal of Philosophical Logic 6 (1):331-347.
  3.  25
    Six Measurement Problems of Quantum Mechanics.F. A. Muller - 2023 - In Jonas R. B. Arenhart & Raoni W. Arroyo (eds.), Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics: Essays in Honour of the Philosophy of Décio Krause. Springer Verlag. pp. 225-259.
    The notorious ‘measurement problem’ has been roving around quantum mechanics for nearly a century since its inception, and has given rise to a variety of ‘interpretations’ of quantum mechanics, which are meant to evade it. We argue that no less than six problems need to be distinguished, and that several of them classify as different types of problems. One of them is what traditionally is called ‘the measurement problem’. Another of them has (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  80
    The 'Decoherence' Approach to the Measurement Problem in Quantum Mechanics.Andrew Elby - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:355 - 365.
    Decoherence results from the dissipative interaction between a quantum system and its environment. As the system and environment become entangled, the reduced density operator describing the system "decoheres" into a mixture (with the interference terms damped out). This formal result prompts some to exclaim that the measurement problem is solved. I will scrutinize this claim by examining how modal and relative-state interpretations can use decoherence. Although decoherence cannot rescue these interpretations from general metaphysical difficulties, decoherence may help (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  5.  45
    How to solve the measurement problem of quantum mechanics.Jeffrey Bub - 1988 - Foundations of Physics 18 (7):701-722.
    A solution to the measurement problem of quantum mechanics is proposed within the framework of an intepretation according to which only quantum systems with an infinite number of degrees of freedom have determinate properties, i.e., determinate values for (some) observables of the theory. The important feature of the infinite case is the existence of many inequivalent irreducible Hilbert space representations of the algebra of observables, which leads, in effect, to a restriction on the superposition principle, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  6. Consciousness, situations, and the measurement problem of quantum mechanics.Michel Bitbol - unknown
    There are two versions of the putative connection between consciousness and the measurement problem of quantum mechanics : consciousness as the cause of state vector reduction, and state vector reduction as the physical basis of consciousness. In this article, these controversial ideas are neither accepted uncritically, nor rejected from the outset in the name of some prejudice about objective knowledge. Instead, their origin is sought in our most cherished (but disputable) beliefs about the place of mind (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  69
    From Micro to Macro: A Solution to the Measurement Problem of Quantum Mechanics.Jeffrey Bub - 1988 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:134 - 144.
    Philosophical debate on the measurement problem of quantum mechanics has, for the most part, been confined to the non-relativistic version of the theory. Quantizing quantum field theory, or making quantum mechanics relativistic, yields a conceptual framework capable of dealing with the creation and annihilation of an indefinite number of particles in interaction with fields, i.e. quantum systems with an infinite number of degrees of freedom. I show that a solution to the standard (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  83
    Relational Physics with Real Rods and Clocks and the Measurement Problem of Quantum Mechanics.Rodolfo Gambini & Jorge Pullin - 2007 - Foundations of Physics 37 (7):1074-1092.
    The use of real clocks and measuring rods in quantum mechanics implies a natural loss of unitarity in the description of the theory. We briefly review this point and then discuss the implications it has for the measurement problem in quantum mechanics. The intrinsic loss of coherence allows to circumvent some of the usual objections to the measurement process as due to environmental decoherence.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Retrodiction in quantum mechanics, preferred Lorentz frames, and nonlocal measurements.O. Cohen & B. J. Hiley - 1995 - Foundations of Physics 25 (12):1669-1698.
    We examine, in the context of the Einstein-Podolsky-Rosen-Bohm gedankenexperiment, problems associated with state reduction and with nonlocal influences according to different interpretations of quantum mechanics, when attempts are made to apply these interpretations in the relativistic domain. We begin by considering the significance of retrodiction within four different interpretations of quantum mechanics, and show that three of these interpretations, if applied in a relativistic context, can lead to ambiguities in their description of a process. We consider (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  33
    Measurement and Classical Regime in Quantum Mechanics.Guido Bacciagaluppi - unknown
    This article focuses on two of the main problems raising interpretational issues in quantum mechanics, namely the notorious measurement problem and the equally important but not quite as widely discussed problem of the classical regime. The two problems are distinct, but they are both intimately related to some of the issues arising from entanglement and density operators. The article aims to be fairly non-technical in language, but modern in outlook and covering the chosen topics in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  11. Quantum Mechanics, Propensities, and Realism.In-rae Cho - 1990 - Dissertation, The Johns Hopkins University
    The goal of the dissertation is, first, to develop in the tradition of conventional quantum mechanics what I call a propensity view of quantum properties, and to examine its coherence. Conventional quantum mechanics assumes the completeness of quantum mechanics. Taking the ontic version of the completeness assumption, which says that a state vector completely describes an individual quantum system as it is, I argue that the propensity view of quantum properties, i.e., (...)
     
    Export citation  
     
    Bookmark  
  12.  15
    The problem of measurement in quantum mechanics.Josef M. Jauch - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 684--686.
  13. The Locality Problem in Quantum Mechanics'.L. Nelson - 1986 - In Daniel M. Greenberger (ed.), New Techniques and Ideas in Quantum Measurement Theory. New York Academy of Sciences.
  14.  30
    A New Approach to the Measurement Problem of Quantum Mechanics.Stanley A. Klein - 2018 - Cosmos and History 14 (1):83-90.
    Quantum Mechanics is typically divided into two parts: the unobserved amplitude given by the equations of quantum field theory and the observed measurement aspect. We argue that a better approach is insert a probability realm in the middle. The reason is that every measurement involves interactions with a complex environment where massive decoherence transforms the amplitudes into standard probabilities. The probabilities eliminate complex superpositions so that quantum states A AND B become classical states A (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  15. Five Formulations of the Quantum Measurement Problem in the Frame of the Standard Interpretation.Manuel Bächtold - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (1):17-33.
    The aim of this paper is to give a systematic account of the so-called “measurement problem” in the frame of the standard interpretation of quantum mechanics. It is argued that there is not one but five distinct formulations of this problem. Each of them depends on what is assumed to be a “satisfactory” description of the measurement process in the frame of the standard interpretation. Moreover, the paper points out that each of these formulations (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  16.  30
    Measurement and “beables” in quantum mechanics.Jeffrey Bub - 1991 - Foundations of Physics 21 (1):25-42.
    It is argued that the measurement problem reduces to the problem of modeling quasi-classical systems in a modified quantum mechanics with superselection rules. A measurement theorem is proved, demonstrating, on the basis of a principle for selecting the quantities of a system that are determinate (i.e., have values) in a given state, that after a suitable interaction between a systemS and a quasi-classical systemM, essentially only the quantity measured in the interaction and the indicator (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  76
    A New Problem for Quantum Mechanics.Alexander Meehan - 2020 - British Journal for the Philosophy of Science:000-000.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state ('no hidden variables'), the control problem turns on (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18. The problem of properties in quantum mechanics.Jeffrey Bub - 1991 - Topoi 10 (1):27-34.
    The properties of classical and quantum systems are characterized by different algebraic structures. We know that the properties of a quantum mechanical system form a partial Boolean algebra not embeddable into a Boolean algebra, and so cannot all be co-determinate. We also know that maximal Boolean subalgebras of properties can be (separately) co-determinate. Are there larger subsets of properties that can be co-determinate without contradiction? Following an analysis of Bohrs response to the Einstein-Podolsky-Rosen objection to the complementarity interpretation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19.  33
    Simultaneous measurement and joint probability distributions in quantum mechanics.Willem M. de Muynck, Peter A. E. M. Janssen & Alexander Santman - 1979 - Foundations of Physics 9 (1-2):71-122.
    The problem of simultaneous measurement of incompatible observables in quantum mechanics is studied on the one hand from the viewpoint of an axiomatic treatment of quantum mechanics and on the other hand starting from a theory of measurement. It is argued that it is precisely such a theory of measurement that should provide a meaning to the axiomatically introduced concepts, especially to the concept of observable. Defining an observable as a class of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  20.  64
    A New Problem for Quantum Mechanics.Alexander Meehan - 2022 - British Journal for the Philosophy of Science 73 (3):631-661.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state (‘no hidden variables’), the control problem turns on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  22
    Wave packet reduction in quantum mechanics: A model of a measuring apparatus. [REVIEW]M. Cini, M. De Maria, G. Mattioli & F. Nicolò - 1979 - Foundations of Physics 9 (7-8):479-500.
    We investigate the problem of “wave packet reduction” in quantum mechanics by solving the Schrödinger equation for a system composed of a model measuring apparatusM interacting with a microscopic objects. The “instrument” is intended to be somewhat more realistic than others previously proposed, but at the same time still simple enough to lead to an explicit solution for the time-dependent density matrix. It turns out that,practically, everything happens as if the wave packet reduction had occurred. This is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  31
    On the Theory of Measurement in Quantum Mechanical Systems.Loyal Durand Iii - 1960 - Philosophy of Science 27 (2):115-.
    This paper is concerned with the description of the process of measurement within the context of a quantum theory of the physical world. It is noted that quantum mechanics permits a quasi-classical description of those macroscopic phenomena in terms of which the observer forms his perceptions. Thus, the process of measurement in quantum mechanics can be understood on the quasi-classical level by transcribing from the strictly classical observables of Newtonian physics to their quasi-classical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  24.  7
    Fundamental Problems in Quantum Physics.M. Ferrero & Alwyn van der Merwe (eds.) - 1995 - Springer.
    For many physicists quantum theory contains strong conceptual difficulties, while for others the apparent conclusions about the reality of our physical world and the ways in which we discover that reality remain philosophically unacceptable. This book focuses on recent theoretical and experimental developments in the foundations of quantum physics, including topics such as the puzzles and paradoxes which appear when general relativity and quantum mechanics are combined; the emergence of classical properties from quantum mechanics; (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Observation and superselection in quantum mechanics.N. P. Landsman - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (1):45-73.
    We attempt to clarify the main conceptual issues in approaches to ‘objectification’ or ‘measurement’ in quantum mechanics which are based on superselection rules. Such approaches venture to derive the emergence of classical ‘reality’ relative to a class of observers; those believing that the classical world exists intrinsically and absolutely are advised against reading this paper. The prototype approach (K. Hepp, Helv. Phys. Acta45 (1972), 237–248) where superselection sectors are assumed in the state space of the apparatus is (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  26.  20
    On the Theory of Measurement in Quantum Mechanical Systems.Loyal Durand - 1960 - Philosophy of Science 27 (2):115-133.
    This paper is concerned with the description of the process of measurement within the context of a quantum theory of the physical world. It is noted that quantum mechanics permits a quasi-classical description of those macroscopic phenomena in terms of which the observer forms his perceptions. Thus, the process of measurement in quantum mechanics can be understood on the quasi-classical level by transcribing from the strictly classical observables of Newtonian physics to their quasi-classical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27. The Only Real Probabilities in Quantum Mechanics.Nancy Cartwright - 1978 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1978:54-59.
    Position probabilities play a privileged role in the interpretation of quantum mechanics. The standard interpretation has it that |Ψ | 2 represents the probability that the system is at the location r. Use of these probabilities, however, creates tremendous conceptual difficulties. It forces us either to adopt a non-standard logic, or to be saddled with an intractable measurement problem. This paper proposes that we try to eliminate position probabilities, and instead to interpret quantum mechanics (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  48
    On the theory of measurement in quantum mechanical systems.I. I. I. Durand - 1960 - Philosophy of Science 27 (2):115-133.
    This paper is concerned with the description of the process of measurement within the context of a quantum theory of the physical world. It is noted that quantum mechanics permits a quasi-classical description (classical in the limited sense implied by the correspondence principle of Bohr) of those macroscopic phenomena in terms of which the observer forms his perceptions. Thus, the process of measurement in quantum mechanics can be understood on the quasi-classical level by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  51
    Undecidability and the Problem of Outcomes in Quantum Measurements.Rodolfo Gambini, Luis Pedro García Pintos & Jorge Pullin - 2009 - Foundations of Physics 40 (1):93-115.
    We argue that it is fundamentally impossible to recover information about quantum superpositions when a quantum system has interacted with a sufficiently large number of degrees of freedom of the environment. This is due to the fact that gravity imposes fundamental limitations on how accurate measurements can be. This leads to the notion of undecidability: there is no way to tell, due to fundamental limitations, if a quantum system evolved unitarily or suffered wavefunction collapse. This in turn (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  50
    On the process of measurement in quantum mechanics.P. Jordan - 1949 - Philosophy of Science 16 (4):269-278.
    It is the purpose of this note to comment on some important problems which have been already vividly discussed by several authors. Besides the well known former discussions of Schrödinger and J. v. Neumann I should like to mention here especially H. Margenau's article, “Critical Points in Modern Physical Theory,” which strongly influenced my present discussion.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  31.  28
    Causality and the Modeling of the Measurement Process in Quantum Theory.Christian de Ronde - 2017 - Disputatio 9 (47):657-690.
    In this paper we provide a general account of the causal models which attempt to provide a solution to the famous measurement problem of Quantum Mechanics. We will argue that—leaving aside instrumentalism which restricts the physical meaning of QM to the algorithmic prediction of measurement outcomes—the many interpretations which can be found in the literature can be distinguished through the way they model the measurement process, either in terms of the efficient cause or in (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  32. Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  33.  43
    The Nature of Information in Quantum Mechanics.Duvenhage Rocco - 2002 - Foundations of Physics 32 (9):1399-1417.
    A suitable unified statistical formulation of quantum and classical mechanics in a *-algebraic setting leads us to conclude that information itself is noncommutative in quantum mechanics. Specifically we refer here to an observer's information regarding a physical system. This is seen as the main difference from classical mechanics, where an observer's information regarding a physical system obeys classical probability theory. Quantum mechanics is then viewed purely as a mathematical framework for the probabilistic description (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Manifestation of Quantum Mechanical Properties of a Proprietor’s Consciousness in Slit Measurements of Economic Systems.Sergiy Melnyk & Igor Tuluzov - 2014 - Neuroquantology 12 (3).
    The present paper discusses the problem of quantum-mechanical properties of a subject’s consciousness. The model of generalized economic measurements is used for the analysis. Two types of such measurements are analyzed – transactions and technologies. Algebraic ratios between the technology-type measurements allow making their analogy with slit experiments in physics. It has been shown that the description of results of such measurements is possible both in classical and in quantum formalism of calculation of probabilities. Thus, the (...)-mechanical formalism of the description of states appears as a result of idealization of the selection mechanism in the proprietor's consciousness. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  25
    The inside observer in quantum mechanics.Richard Mould - 1995 - Foundations of Physics 25 (11):1621-1629.
    The “observer” in physics has always referred to someone who stands on the outside of a system looking in. In this paper an “inside observer” is defined, and an experiment is proposed that tests a given formulation of the problem of measurement in quantum mechanics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. The Probability Problem in Everettian Quantum Mechanics Persists.F. Dizadji-Bahmani - 2013 - British Journal for the Philosophy of Science (2):axt035.
    Everettian quantum mechanics results in ‘multiple, emergent, branching quasi-classical realities’ . The possible outcomes of measurement as per ‘orthodox’ quantum mechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch , has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, as follows. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  37. Empirical adequacy and the availability of reliable records in quantum mechanics.Jeffrey A. Barrett - 1996 - Philosophy of Science 63 (1):49-64.
    In order to judge whether a theory is empirically adequate one must have epistemic access to reliable records of past measurement results that can be compared against the predictions of the theory. Some formulations of quantum mechanics fail to satisfy this condition. The standard theory without the collapse postulate is an example. Bell's reading of Everett's relative-state formulation is another. Furthermore, there are formulations of quantum mechanics that only satisfy this condition for a special class (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  38.  74
    The Probability Problem in Everettian Quantum Mechanics Persists.Foad Dizadji-Bahmani - 2015 - British Journal for the Philosophy of Science 66 (2):257-283.
    Everettian quantum mechanics (EQM) results in ‘multiple, emergent, branching quasi-classical realities’ (Wallace [2012]). The possible outcomes of measurement as per ‘orthodox’ quantum mechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch ([1999]), has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  39. Towards a process-based approach to consciousness and collapse in quantum mechanics.Raoni Arroyo, Lauro de Matos Nunes Filho & Frederik Moreira Dos Santos - 2024 - Manuscrito 47 (1):2023-0047.
    According to a particular interpretation of quantum mechanics, the causal role of human consciousness in the measuring process is called upon to solve a foundational problem called the “measurement problem.” Traditionally, this interpretation is tied up with the metaphysics of substance dualism. As such, this interpretation of quantum mechanics inherits the dualist’s mind-body problem. Our working hypothesis is that a process-based approach to the consciousness causes collapse interpretation (CCCI) ---leaning on Whitehead’s solution (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  40.  23
    Truth as Contextual Correspondence in Quantum Mechanics.Vassilios Karakostas - 2015 - Philosophia Scientiae 19:199-212.
    The semantics underlying the propositional structure of Hilbert space quantum mechanics involves an inherent ambiguity concerning the impossibility of assigning definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. Although the preceding Kochen-Specker result forbids a global, absolute assignment of truth values to quantum mechanical propositions, it does not exclude ones that are contextual. In this respect, the Bub-Clifton “uniqueness theorem” is utilized for arguing that truth-value definiteness is consistently (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  34
    Bridging Necessity And Contingency In Quantum Mechanics: Potentiality, Actuality, and the Scientific Rehabilitation of Process Ontology.Michael Epperson - 2016 - In Timothy E. Eastman, Michael Epperson & David Ray Griffin (eds.), Physics and Speculative Philosophy: Potentiality in Modern Science. Boston: De Gruyter. pp. 55-106.
    Through both an historical and philosophical analysis of the concept of possibility, we show how including both potentiality and actuality as part of the real is both compatible with experience and contributes to solving key problems of fundamental process and emergence. The book is organized into four main sections that incorporate our routes to potentiality: (1) potentiality in modern science [history and philosophy; quantum physics and complexity]; (2) Relational Realism [ontological interpretation of quantum physics; philosophy and logic]; (3) (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. A New Look at the Quantum Mechanical Problem of Measurement.Nicholas Maxwell - 1972 - American Journal of Physics 40:1431-5..
    According to orthodox quantum mechanics, state vectors change in two incompatible ways: "deterministically" in accordance with Schroedinger's time-dependent equation, and probabilistically if and only if a measurement is made. It is argued here that the problem of measurement arises because the precise mutually exclusive conditions for these two types of transitions to occur are not specified within orthodox quantum mechanics. Fundamentally, this is due to an inevitable ambiguity in the notion of "meawurement" itself. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  43.  81
    Undecidability and the problem of outcomes in quantum measurements.Rodolfo Gambini, Luis Pedro Garcia Pintos & Jorge Pullin - forthcoming - Foundations of Physics:93-115.
    We argue that it is fundamentally impossible to recover information about quantum superpositions when a quantum system has interacted with a sufficiently large number of degrees of freedom of the environment. This is due to the fact that gravity imposes fundamental limitations on how accurate measurements can be. This leads to the notion of undecidability: there is no way to tell, due to fundamental limitations, if a quantum system evolved unitarily or suffered wavefunction collapse. This in turn (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  44.  71
    The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45. Does the Minimal Statistical Interpretation of Quantum Mechanics Resolve the Measurement Problem?Nicholas Maxwell - 1975 - Methodology and Science 8:84-101.
    It is argued that the so-called minimal statistical interpretation of quantum mechanics does not completely resolve the measurement problem in that this view is unable to show that quantjum mechanics can dispense with classical physics when it comes to a treatment of the measuring interaction. It is suggested that the view that quantum mechanics applies to individual systems should not be too hastily abandoned, in that this view gives perhaps the best hope of (...)
     
    Export citation  
     
    Bookmark   5 citations  
  46. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47. Interference, noncommutativity, and determinateness in quantum mechanics.Jeffrey Bub - 1995 - Topoi 14 (1):39-43.
    I consider to what extent the phenomenon of interference precludes the possibility of attributing simultaneously determinate values to noncommuting observables, and I show that, while all observables can in principle be taken as simultaneously determinate, it suffices to take a suitable privileged observable as determinate to solve the measurement problem.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  93
    Between Physics and Metaphysics: A Discussion of the Status of Mind in Quantum Mechanics.Raoni Arroyo & Jonas Arenhart - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag. pp. 31-42.
    We discuss the ‘Consciousness Causes Collapse Hypothesis’ (CCCH), the interpretation of quantum mechanics according to which consciousness solves the measurement problem. At first, it seems that the very hypothesis that consciousness causally acts over matter counts as a reductio of CCCH. However, CCCH won’t go so easily. In this paper we attempt to bring new light to the discussion. We distinguish the ontology of the interpretation (the positing of a causally efficacious consciousness as part of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  49.  30
    The Information Interpretation and the Conceptual Problems of Quantum Mechanics.Miguel Ferrero - 2003 - Foundations of Physics 33 (4):665-676.
    It has been traditionally considered that Quantum Mechanics has two conceptual kinds of problems, namely, those related with local-realism and the so-called measurement problem. That is, the uniqueness of the result when we make a measurement. With the development of what is called generically Quantum Information Theory, a new form of the Copenhagen interpretation of the formalism has taken shape.(1) In this paper, we will analyse if this information interpretation is able to clarify these (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Entanglement, Upper Probabilities and Decoherence in Quantum Mechanics.Patrick Suppes & Stephan Hartmann - 2009 - In Mauro Dorato et al (ed.), EPSA 2007: Launch of the European Philosophy of Science Association. Springer. pp. 93--103.
    Quantum mechanical entangled configurations of particles that do not satisfy Bell’s inequalities, or equivalently, do not have a joint probability distribution, are familiar in the foundational literature of quantum mechanics. Nonexistence of a joint probability measure for the correlations predicted by quantum mechanics is itself equivalent to the nonexistence of local hidden variables that account for the correlations (for a proof of this equivalence, see Suppes and Zanotti, 1981). From a philosophical standpoint it is natural (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 988