Order:
  1.  23
    Factorials of infinite cardinals in zf part I: Zf results.Guozhen Shen & Jiachen Yuan - 2020 - Journal of Symbolic Logic 85 (1):224-243.
    For a set x, let ${\cal S}\left$ be the set of all permutations of x. We prove in ZF several results concerning this notion, among which are the following: For all sets x such that ${\cal S}\left$ is Dedekind infinite, $\left| {{{\cal S}_{{\rm{fin}}}}\left} \right| < \left| {{\cal S}\left} \right|$ and there are no finite-to-one functions from ${\cal S}\left$ into ${{\cal S}_{{\rm{fin}}}}\left$, where ${{\cal S}_{{\rm{fin}}}}\left$ denotes the set of all permutations of x which move only finitely many elements. For all sets (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  2.  43
    Factorials of infinite cardinals in zf part II: Consistency results.Guozhen Shen & Jiachen Yuan - 2020 - Journal of Symbolic Logic 85 (1):244-270.
    For a set x, let S(x) be the set of all permutations of x. We prove by the method of permutation models that the following statements are consistent with ZF: (1) There is an infinite set x such that |p(x)|<|S(x)|<|seq^1-1(x)|<|seq(x)|, where p(x) is the powerset of x, seq(x) is the set of all finite sequences of elements of x, and seq^1-1(x) is the set of all finite sequences of elements of x without repetition. (2) There is a Dedekind infinite set (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  22
    How far is almost strong compactness from strong compactness.Zhixing You & Jiachen Yuan - 2025 - Journal of Mathematical Logic 25 (1).
    Bagaria and Magidor introduced the notion of almost strong compactness, which is very close to the notion of strong compactness. Boney and Brooke-Taylor asked whether the least almost strongly compact cardinal is strongly compact. Goldberg gives a positive answer in the case [Formula: see text] holds from below and the least almost strongly compact cardinal has uncountable cofinality. In this paper, we give a negative answer for the general case. Our result also gives an affirmative answer to a question of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  18
    On the cofinality of the least $\lambda $ -strongly compact cardinal.Y. O. U. Zhixing & Jiachen Yuan - 2024 - Journal of Symbolic Logic 89 (2):569-582.
    In this paper, we characterize the possible cofinalities of the least $\lambda $ -strongly compact cardinal. We show that, on the one hand, for any regular cardinal, $\delta $, that carries a $\lambda $ -complete uniform ultrafilter, it is consistent, relative to the existence of a supercompact cardinal above $\delta $, that the least $\lambda $ -strongly compact cardinal has cofinality $\delta $. On the other hand, provably the cofinality of the least $\lambda $ -strongly compact cardinal always carries a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark