Journal of Symbolic Logic 56 (3):1026-1037 (1991)
Abstract |
We define an R-group to be a stable group with the property that a generic element (for any definable transitive group action) can only be algebraic over a generic. We then derive some corollaries for R-groups and fields, and prove a decomposition theorem and a field theorem. As a nonsuperstable example, we prove that small stable groups are R-groups
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.2178/jsl/1183743749 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
The Model Theory of Unitriangular Groups.Oleg V. Belegradek - 1994 - Annals of Pure and Applied Logic 68 (3):225-261.
Similar books and articles
Équations Génériques Dans Un Groupe Stable Nilpotent.Khaled Jaber - 1999 - Journal of Symbolic Logic 64 (2):761-768.
Quasi-Endomorphisms in Small Stable Groups.Frank O. Wagner - 1993 - Journal of Symbolic Logic 58 (3):1044-1051.
CM-Triviality and Stable Groups.Frank O. Wagner - 1998 - Journal of Symbolic Logic 63 (4):1473-1495.
A Note on Defining Groups in Stable Structures.Frank O. Wagner - 1994 - Journal of Symbolic Logic 59 (2):575-578.
Simple Stable Homogeneous Groups.Alexander Berenstein - 2003 - Journal of Symbolic Logic 68 (4):1145-1162.
Analytics
Added to PP index
2009-01-28
Total views
40 ( #283,384 of 2,505,176 )
Recent downloads (6 months)
1 ( #416,705 of 2,505,176 )
2009-01-28
Total views
40 ( #283,384 of 2,505,176 )
Recent downloads (6 months)
1 ( #416,705 of 2,505,176 )
How can I increase my downloads?
Downloads