Journal of Symbolic Logic 58 (3):1044-1051 (1993)

Abstract
We generalise various properties of quasiendomorphisms from groups with regular generic to small abelian groups. In particular, for a small abelian group such that no infinite definable quotient is connected-by-finite, the ring of quasi-endomorphisms is locally finite. Under some additional assumptions, it decomposes modulo some nil ideal into a sum of finitely many matrix rings
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275111
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 71,316
Through your library

References found in this work BETA

More on ${\germ R}$.Frank O. Wagner - 1992 - Notre Dame Journal of Formal Logic 33 (2):159-174.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

On Atomic or Saturated Sets.Ludomir Newelski - 1996 - Journal of Symbolic Logic 61 (1):318-333.
CM-Triviality and Stable Groups.Frank O. Wagner - 1998 - Journal of Symbolic Logic 63 (4):1473-1495.
Small Profinite Groups.Ludomir Newelski - 2001 - Journal of Symbolic Logic 66 (2):859-872.
The Model Theory of Finitely Generated Finite-by-Abelian Groups.Francis Oger - 1984 - Journal of Symbolic Logic 49 (4):1115-1124.
Quasi-o-Minimal Structures.Oleg Belegradek, Ya'acov Peterzil & Frank Wagner - 2000 - Journal of Symbolic Logic 65 (3):1115-1132.
Describing Groups.André Nies - 2007 - Bulletin of Symbolic Logic 13 (3):305-339.
Abelian Groups with Modular Generic.James Loveys - 1991 - Journal of Symbolic Logic 56 (1):250-259.
Subgroups of Stable Groups.Frank Wagner - 1990 - Journal of Symbolic Logic 55 (1):151-156.
Small Stable Groups and Generics.Frank O. Wagner - 1991 - Journal of Symbolic Logic 56 (3):1026-1037.

Analytics

Added to PP index
2009-01-28

Total views
206 ( #56,935 of 2,519,312 )

Recent downloads (6 months)
1 ( #407,861 of 2,519,312 )

How can I increase my downloads?

Downloads

My notes