Kant and real numbers
Authors |
|
Abstract |
Kant held that under the concept of √2 falls a geometrical magnitude, but not a number. In particular, he explicitly distinguished this root from potentially infinite converging sequences of rationals. Like Kant, Brouwer based his foundations of mathematics on the a priori intuition of time, but unlike Kant, Brouwer did identify this root with a potentially infinite sequence. In this paper I discuss the systematical reasons why in Kant's philosophy this identification is impossible
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
Options |
![]() ![]() ![]() |
Download options
References found in this work BETA
Kant and the Capacity to Judge.Kenneth R. Westphal & Beatrice Longuenesse - 2000 - Philosophical Review 109 (4):645.
Greek Mathematical Thought and the Origin of Algebra.Jacob Klein, Eva Brann & J. Winfree Smith - 1969 - British Journal for the Philosophy of Science 20 (4):374-375.
View all 16 references / Add more references
Citations of this work BETA
No citations found.
Similar books and articles
Constructing Numbers Through Moments in Time: Kant's Philosophy of Mathematics.Paul Anthony Wilson - unknown
On a Semantic Interpretation of Kant's Concept of Number.Wing-Chun Wong - 1999 - Synthese 121 (3):357-383.
El argumento ontológico y la muerte de la metafísica. Dos visiones complementarias: Kant y Hegel.Hector Ferreiro - 2012 - Veritas – Revista de Filosofia da Pucrs 57 (3):99-120.
The Paradox of Infinite Given Magnitude: Why Kantian Epistemology Needs Metaphysical Space.Lydia Patton - 2011 - Kant Studien 102 (3):273-289.
Kant’s Theory of Arithmetic: A Constructive Approach? [REVIEW]Kristina Engelhard & Peter Mittelstaedt - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (2):245 - 271.
Michael Friedmans Behandlung des Unterschiedes zwischen Arithmetik und Algebra bei Kant in Kant and the Exact Sciences.Peter Ospald - 2010 - Kant Studien 101 (1):75-88.
Real Repugnance and Our Ignorance of Things-in-Themselves: A Lockean Problem in Kant and Hegel.Andrew Chignell - 2010 - Internationales Jahrbuch des Deutschen Idealismus 7:135-159.
Kant’s Proof of the Law of Inertia.Kenneth Westphal - 1995 - In H. Robinson (ed.), Proceedings of the 8th International Kant Congress. Marquette University Press. pp. 413-424.
Frege and Kant on Geometry.Michael Dummett - 1982 - Inquiry: An Interdisciplinary Journal of Philosophy 25 (2):233 – 254.
Analytics
Added to PP index
2013-02-14
Total views
61 ( #187,196 of 2,506,501 )
Recent downloads (6 months)
1 ( #416,791 of 2,506,501 )
2013-02-14
Total views
61 ( #187,196 of 2,506,501 )
Recent downloads (6 months)
1 ( #416,791 of 2,506,501 )
How can I increase my downloads?
Downloads