Hybrid logics of separation axioms
Journal of Logic, Language and Information 18 (4):541-558 (2009)
Abstract
We study hybrid logics in topological semantics. We prove that hybrid logics of separation axioms are complete with respect to certain classes of finite topological models. This characterisation allows us to obtain several further results. We prove that aforementioned logics are decidable and PSPACE-complete, the logics of T 1 and T 2 coincide, the logic of T 1 is complete with respect to two concrete structures: the Cantor space and the rational numbers.DOI
10.1007/s10849-009-9091-z
My notes
Similar books and articles
The complexity of hybrid logics over equivalence relations.Martin Mundhenk & Thomas Schneider - 2009 - Journal of Logic, Language and Information 18 (4):493-514.
Branching-time logics repeatedly referring to states.Volker Weber - 2009 - Journal of Logic, Language and Information 18 (4):593-624.
Hybrid logics with infinitary proof systems.Rineke Verbrugge, Gerard Renardel de Lavalette & Barteld Kooi - unknown
Canonicity for intensional logics without iterative axioms.Timothy J. Surendonk - 1997 - Journal of Philosophical Logic 26 (4):391-409.
Remarks on Gregory's “actually” operator.Patrick Blackburn & Maarten Marx - 2002 - Journal of Philosophical Logic 31 (3):281-288.
Analytics
Added to PP
2009-04-27
Downloads
30 (#391,727)
6 months
1 (#451,971)
2009-04-27
Downloads
30 (#391,727)
6 months
1 (#451,971)
Historical graph of downloads
References found in this work
The Algebra of Topology.J. C. C. Mckinsey & Alfred Tarski - 1944 - Annals of Mathematics, Second Series 45:141-191.
Modal logic with names.George Gargov & Valentin Goranko - 1993 - Journal of Philosophical Logic 22 (6):607 - 636.
Multimo dal Logics of Products of Topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
The computational complexity of hybrid temporal logics.C. Areces, P. Blackburn & M. Marx - 2000 - Logic Journal of the IGPL 8 (5):653-679.
Multimo dal logics of products of topologies.J. van Benthem, G. Bezhanishvili, B. ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369-392.