13 found
Order:
See also
Valentin Shehtman
Moscow State University
  1.  16
    « Everywhere » and « Here ».Valentin Shehtman - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):369-379.
    ABSTRACT The paper studies propositional logics in a bimodal language, in which the first modality is interpreted as the local truth, and the second as the universal truth. The logic S4UC is introduced, which is finitely axiomatizable, has the f.m.p. and is determined by every connected separable metric space.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  2.  40
    Modal Counterparts of Medvedev Logic of Finite Problems Are Not Finitely Axiomatizable.Valentin Shehtman - 1990 - Studia Logica 49 (3):365 - 385.
    We consider modal logics whose intermediate fragments lie between the logic of infinite problems [20] and the Medvedev logic of finite problems [15]. There is continuum of such logics [19]. We prove that none of them is finitely axiomatizable. The proof is based on methods from [12] and makes use of some graph-theoretic constructions (operations on coverings, and colourings).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  3.  3
    Chronological Future Modality in Minkowski Spacetime.Ilya Shapirovsky & Valentin Shehtman - 2003 - In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter & Michael Zakharyaschev (eds.), Advances in Modal Logic, Volume 4. CSLI Publications. pp. 437-459.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  4.  4
    Products of Modal Logics and Tensor Products of Modal Algebras.Dov Gabbay, Ilya Shapirovsky & Valentin Shehtman - 2014 - Journal of Applied Logic 12 (4):570-583.
  5.  25
    Products of Modal Logics. Part 3: Products of Modal and Temporal Logics.Dov Gabbay & Valentin Shehtman - 2002 - Studia Logica 72 (2):157-183.
    In this paper we improve the results of [2] by proving the product f.m.p. for the product of minimal n-modal and minimal n-temporal logic. For this case we modify the finite depth method introduced in [1]. The main result is applied to identify new fragments of classical first-order logic and of the equational theory of relation algebras, that are decidable and have the finite model property.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  3
    Advances in Modal Logic 8.Lev Dmitrievich Beklemishev, Valentin Goranko & Valentin Shehtman (eds.) - 2010 - London, England: College Publications.
    Proc. of the 8th International Conference on Advances in Modal Logic, (AiML'2010).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Problems in Set Theory, Mathematical Logic and the Theory of Algorithms.Igor Lavrov, Larisa Maksimova, Giovanna Corsi & Valentin Shehtman - 2005 - Studia Logica 81 (2):283-285.
     
    Export citation  
     
    Bookmark  
  8. On Strong Neighbourhood Completeness of Modal and Intermediate Propositional Logics.Valentin Shehtman - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic, Volume 1. CSLI Publications. pp. 209-222.
    No categories
     
    Export citation  
     
    Bookmark  
  9.  48
    First-Order Modal Logic, M. Fitting and R.L. Mendelsohn.Valentin Shehtman - 2001 - Journal of Logic, Language and Information 10 (3):403-405.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  13
    Foreword.Valentin Shehtman - 2007 - Journal of Applied Non-Classical Logics 17 (3):281-281.
  11.  6
    Completeness and Incompleteness in First-Order Modal Logic: An Overview.Valentin Shehtman - 2006 - In Guido Governatori, Ian Hodkinson & Yde Venema (eds.), Advances in Modal Logic, Volume 6. CSLI Publications. pp. 27-30.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  4
    On Modal Logics of Hamming Spaces.Andrey Kudinov, Ilya Shapirovsky & Valentin Shehtman - 2012 - In Thomas Bolander, Torben Braüner, Silvio Ghilardi & Lawrence Moss (eds.), Advances in Modal Logic, Volume 9. CSLI Publications. pp. 395-410.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  3
    Filtration Via Bisimulation.Valentin Shehtman - 2005 - In Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds & Heinrich Wansing (eds.), Advances in Modal Logic, Volume 5. CSLI Publications. pp. 289-308.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation