Abstract
The commentaries reflect three core themes that pertain not just to our theory, but to the enterprise of connectionist modeling more generally. The first concerns the relationship between a cognitive theory and an implemented computer model. Specifically, how does one determine, when a model departs from the theory it exemplifies, whether the departure is a useful simplification or a critical flaw? We argue that the answer to this question depends partially upon the model's intended function, and we suggest that connectionist models have important functions beyond the commonly accepted goals of fitting data and making predictions. The second theme concerns perceived in-principle limitations of the connectionist approach to cognition, and the specific concerns these perceived limitations raise for our theory. We argue that the approach is not in fact limited in the ways our critics suggest. One common misconception, that connectionist models cannot address abstract or relational structure, is corrected through new simulations showing directly that such structure can be captured. The third theme concerns the relationship between parallel distributed processing (PDP) models and structured probabilistic approaches. In this case we argue that there the difference between the approaches is not merely one of levels. Our PDP approach differs from structured statistical approaches at all of Marr's levels, including the characterization of the goals of cognitive computations, and of the representations and algorithms used