Symplectic Quantization II: Dynamics of Space–Time Quantum Fluctuations and the Cosmological Constant

Foundations of Physics 51 (3):1-18 (2021)
  Copy   BIBTEX

Abstract

The symplectic quantization scheme proposed for matter scalar fields in the companion paper (Gradenigo and Livi, arXiv:2101.02125, 2021) is generalized here to the case of space–time quantum fluctuations. That is, we present a new formalism to frame the quantum gravity problem. Inspired by the stochastic quantization approach to gravity, symplectic quantization considers an explicit dependence of the metric tensor gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} on an additional time variable, named intrinsic time at variance with the coordinate time of relativity, from which it is different. The physical meaning of intrinsic time, which is truly a parameter and not a coordinate, is to label the sequence of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} quantum fluctuations at a given point of the four-dimensional space–time continuum. For this reason symplectic quantization necessarily incorporates a new degree of freedom, the derivative g˙μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{g}}_{\mu \nu }$$\end{document} of the metric field with respect to intrinsic time, corresponding to the conjugated momentum πμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\mu \nu }$$\end{document}. Our proposal is to describe the quantum fluctuations of gravity by means of a symplectic dynamics generated by a generalized action functional A[gμν,πμν]=K[gμν,πμν]-S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }] = {\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }] - S[g_{\mu \nu }]$$\end{document}, playing formally the role of a Hamilton function, where S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S[g_{\mu \nu }]$$\end{document} is the standard Einstein–Hilbert action while K[gμν,πμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }]$$\end{document} is a new term including the kinetic degrees of freedom of the field. Such an action allows us to define an ensemble for the quantum fluctuations of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document} analogous to the microcanonical one in statistical mechanics, with the only difference that in the present case one has conservation of the generalized action A[gμν,πμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }]$$\end{document} and not of energy. Since the Einstein–Hilbert action S[gμν]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S[g_{\mu \nu }]$$\end{document} plays the role of a potential term in the new pseudo-Hamiltonian formalism, it can fluctuate along the symplectic action-preserving dynamics. These fluctuations are the quantum fluctuations of gμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mu \nu }$$\end{document}. Finally, we show how the standard path-integral approach to gravity can be obtained as an approximation of the symplectic quantization approach. By doing so we explain how the integration over the conjugated momentum field πμν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{\mu \nu }$$\end{document} gives rise to a cosmological constant term in the path-integral approach.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,932

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Set theory without choice: not everything on cofinality is possible.Saharon Shelah - 1997 - Archive for Mathematical Logic 36 (2):81-125.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.

Analytics

Added to PP
2021-05-26

Downloads
15 (#947,808)

6 months
11 (#339,306)

Historical graph of downloads
How can I increase my downloads?