Study and simulation of reaction–diffusion systems affected by interacting signaling pathways

Acta Biotheoretica 56 (4):315-328 (2008)
  Copy   BIBTEX

Abstract

Possible effects of interaction (cross-talk) between signaling pathways is studied in a system of Reaction–Diffusion (RD) equations. Furthermore, the relevance of spontaneous neurite symmetry breaking and Turing instability has been examined through numerical simulations. The interaction between Retinoic Acid (RA) and Notch signaling pathways is considered as a perturbation to RD system of axon-forming potential for N2a neuroblastoma cells. The present work suggests that large increases to the level of RA–Notch interaction can possibly have substantial impacts on neurite outgrowth and on the process of axon formation. This can be observed by the numerical study of the homogeneous system showing that in the absence of RA–Notch interaction the unperturbed homogeneous system may exhibit different saddle-node bifurcations that are robust under small perturbations by low levels of RA–Notch interactions, while large increases in the level of RA–Notch interaction result in a number of transitions of saddle-node bifurcations into Hopf bifurcations. It is speculated that near a Hopf bifurcation, the regulations between the positive and negative feedbacks change in such a way that spontaneous symmetry breaking takes place only when transport of activated Notch protein takes place at a faster rate.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 90,616

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
42 (#332,036)

6 months
2 (#668,348)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

A theory of biological pattern formation.Alfred Gierer & Hans Meinhardt - 1972 - Kybernetik, Continued as Biological Cybernetics 12 (1):30 - 39.

Add more references