Journal of Symbolic Logic 65 (3):1014-1030 (2000)
Abstract |
We show that true first-order arithmetic is interpretable over the real-algebraic structure of models of intuitionistic analysis built upon a certain class of complete Heyting algebras. From this the undecidability of the structures follows. We also show that Scott's model is equivalent to true second-order arithmetic. In the appendix we argue that undecidability on the language of ordered rings follows from intuitionistically plausible properties of the real numbers.
|
Keywords | undecidability intuitionistic analysis topological models Kripke's scheme |
Categories | (categorize this paper) |
DOI | http://projecteuclid.org/euclid.jsl/1183746167 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Mathematical Intuitionism. Introduction to Proof Theory.A. G. Dragalin & E. Mendelson - 1990 - Journal of Symbolic Logic 55 (3):1308-1309.
A Topological Model for Intuitionistic Analysis with Kripke's Scheme.M. D. Krol - 1978 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 24 (25-30):427-436.
A New Model for Intuitionistic Analysis.Philip Scowcroft - 1990 - Annals of Pure and Applied Logic 47 (2):145-165.
Downey, R., F, iiForte, G. And Nies, A., Addendum To.R. Jin, I. Kalantari, L. Welch, B. Khoussainov, R. A. Shore, A. P. Pynko, P. Scowcroft, S. Shelah, J. Zapletal & J. B. Wells - 1999 - Annals of Pure and Applied Logic 98:299.
View all 6 references / Add more references
Citations of this work BETA
No citations found.
Similar books and articles
Undecidability of the Real-Algebraic Structure of Scott's Model.Miklós Erdélyi-Szabó - 1998 - Mathematical Logic Quarterly 44 (3):344-348.
Diophantine Undecidability in Some Rings of Algebraic Numbers of Totally Real Infinite Extensions of Q.Alexandra Shlapentokh - 1994 - Annals of Pure and Applied Logic 68 (3):299-325.
The Real-Algebraic Structure of Scott's Model of Intuitionistic Analysis.Philip Scowcroft - 1984 - Annals of Pure and Applied Logic 27 (3):275-308.
Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
Mutually Algebraic Structures and Expansions by Predicates.Michael C. Laskowski - 2013 - Journal of Symbolic Logic 78 (1):185-194.
Models of Intuitionistic TT and N.Daniel Dzierzgowski - 1995 - Journal of Symbolic Logic 60 (2):640-653.
Relating First-Order Set Theories and Elementary Toposes.Steve Awodey & Thomas Streicher - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
A Brief Introduction to Algebraic Set Theory.Steve Awodey - 2008 - Bulletin of Symbolic Logic 14 (3):281-298.
Relating First-Order Set Theories and Elementary Toposes.Steve Awodey, Carsten Butz & Alex Simpson - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.
Intuitionistic Completeness for First Order Classical Logic.Stefano Berardi - 1999 - Journal of Symbolic Logic 64 (1):304-312.
Groundwork for Weak Analysis.António M. Fernandes & Fernando Ferreira - 2002 - Journal of Symbolic Logic 67 (2):557-578.
Intuitionistic Completeness for First Order Classical Logic.Stefano Berardi - 1999 - Journal of Symbolic Logic 64 (1):304-312.
Partially-Elementary Extension Kripke Models: A Characterization and Applications.Tomasz Połacik - 2006 - Logic Journal of the IGPL 14 (1):73-86.
Topological Elementary Equivalence of Closed Semi-Algebraic Sets in the Real Plane.Bart Kuijpers, Jan Paredaens & Jan Van Den Bussche - 2000 - Journal of Symbolic Logic 65 (4):1530 - 1555.
Analytics
Added to PP index
2009-01-28
Total views
18 ( #608,386 of 2,507,401 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,401 )
2009-01-28
Total views
18 ( #608,386 of 2,507,401 )
Recent downloads (6 months)
1 ( #416,983 of 2,507,401 )
How can I increase my downloads?
Downloads