Propositional Profusion and the Liar
Abstract
Argument that Q∃ expresses more than one proposition: (1) Q∃ expresses the proposition that Q∃ expresses some proposition that isn’t true. ((E)) (2) If Q ∃ expresses only true propositions, then the proposition that Q ∃ expresses some proposition that isn’t true is true. ((1)) (3) If Q∃ expresses only true propositions, then some proposition expressed by Q∃ is not true. (2, T) (4) Some proposition expressed by Q ∃ is not true. ((3)) (5) The proposition that Q ∃ expresses some proposition that isn’t true is true. (4, T) (6) Q∃ expresses at least one true proposition. (1,5) (7) Q∃ expresses at least two propositions. (3, 6) (A parallel argument shows that Q∀ expresses both true and false propositionsAuthor's Profile
My notes
Similar books and articles
Context-sensitivity.Tom Donaldson & Ernie Lepore - 2012 - In Gillian Russell & Delia Graff Fara (eds.), Routledge Companion to Philosophy of Language. New York, NY, USA: Routledge. pp. 116 - 131.
Everything is Knowable – How to Get to Know Whether a Proposition is True.Hans van Ditmarsch, Wiebe van der Hoek & Petar Iliev - 2012 - Theoria 78 (2):93-114.
''Every proposition asserts itself to be true'': A Buridanian solution to the Liar paradox?Simon Evnine - manuscript
Why Truthmakers?Gonzalo Rodriguez-Pereyra - 2005 - In Helen Beebee & Julian Dodd (eds.), Truthmakers: the contemporary debate. Oxford University Press. pp. 17-31.
Die struktur der begründung wissenschaftlicher prognosen.Steen Olaf Welding - 1984 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 15 (1):72-91.
On the storeyed revenge of strengthened liars, and the contrary finality of no-proposition resolutions.Jordan Howard Sobel - manuscript
Supposition, Reference and Nonexistence--The Supposition Problem and Its Solutions.Xu Min - manuscript
Bringing about and conjunction: A reply to Bigelow on omnificence.Ghislain Guigon - 2009 - Analysis 69 (3):452-458.
Analytics
Added to PP
2012-03-31
Downloads
89 (#139,551)
6 months
1 (#448,551)
2012-03-31
Downloads
89 (#139,551)
6 months
1 (#448,551)
Historical graph of downloads
Author's Profile
Citations of this work
Higher-order free logic and the Prior-Kaplan paradox.Andrew Bacon, John Hawthorne & Gabriel Uzquiano - 2016 - Canadian Journal of Philosophy 46 (4-5):493-541.
Cretan Deductions.Rachel Elizabeth Fraser & John Hawthorne - 2015 - Philosophical Perspectives 29 (1):163-178.