Surface-Based Spontaneous Oscillation in Schizophrenia: A Resting-State Functional Magnetic Resonance Imaging Study

Frontiers in Human Neuroscience 15 (2021)
  Copy   BIBTEX

Abstract

Schizophrenia is considered as a self-disorder with disordered local synchronous activation. Previous studies have reported widespread dyssynchrony of local activation in patients with SZ, which may be one of the crucial physiological mechanisms of SZ. To further verify this assumption, this work used a surface-based two-dimensional regional homogeneity approach to compare the local neural synchronous spontaneous oscillation between patients with SZ and healthy controls, instead of the volume-based regional homogeneity approach described in previous study. Ninety-seven SZ patients and 126 HC were recruited to this study, and we found the SZ showed abnormal 2dReHo across the cortical surface. Specifically, at the global level, the SZ patients showed significantly reduced global 2dReHo; at the vertex level, the foci with increased 2dReHo in SZ were located in the default mode network, frontoparietal network, and limbic network ; however, foci with decreased 2dReHo were located in the somatomotor network, auditory network, and visual network. Additionally, this work found positive correlations between the 2dReHo of bilateral rectus and illness duration, as well as a significant positive correlation between the 2dReHo of right orbital inferior frontal gyrus with the negative scores of the positive and negative syndrome scale in the SZ patients. Therefore, the 2dReHo could provide some effective features contributed to explore the pathophysiology mechanism of SZ.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,853

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-12-06

Downloads
13 (#1,035,489)

6 months
9 (#307,343)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Y Jiang
King's College London
Chao Li
Tongji University

Citations of this work

No citations found.

Add more citations