The role of models in the process of epistemic integration: the case of the Reichardt motion detector

History and Philosophy of the Life Sciences 36 (1):90-113 (2014)
  Copy   BIBTEX

Abstract

Recent work on epistemic integration in the life sciences has emphasized the importance of integration in thinking about explanatory practice in science, particularly for articulating a robust alternative to reductionism and anti-reductionism. This paper analyzes the role of models in balancing the relative contributions of lower- and higher-level epistemic resources involved in this process. Integration between multiple disciplines proceeds by constructing a problem agenda (Love 2008), a set of interrelated problems that structures the problem space of a complex phenomenon that is investigated by many disciplines. The usage of models, it is argued, mark changes in a phenomenon’s problem agenda depending on the task that is expected of it. Particularly, it emphasizes the sensitivity of a problem agenda to changing attitudes in the solutions to the conceptual and empirical items constituting that agenda. The analysis will proceed by means of a case study, the Reichardt motion detector, a model that has been vital to the methodological and conceptual development of research on motion detection, especially in invertebrates. As will be seen, the history of the Reichardt model will exemplify the dynamic changes that occur in the interdisciplinary negotiations that comprise the active efforts of various sciences working to integrate their resources.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,891

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Beyond reduction: mechanisms, multifield integration and the unity of neuroscience.Carl F. Craver - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):373-395.
Dimensions of integration in interdisciplinary explanations of the origin of evolutionary novelty.Alan C. Love & Gary L. Lugar - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):537-550.
Models and the mosaic of scientific knowledge. The case of immunology.Tudor M. Baetu - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 45 (1):49-56.
Integration of approaches in David Wake’s model-taxon research platform for evolutionary morphology.James Griesemer - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):525-536.

Analytics

Added to PP
2015-06-05

Downloads
41 (#377,994)

6 months
12 (#305,852)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Daniel Stephen Brooks
Ruhr-Universität Bochum