On the lattice of quasivarieties of Sugihara algebras

Studia Logica 45 (3):275 - 280 (1986)
  Copy   BIBTEX

Abstract

Let S denote the variety of Sugihara algebras. We prove that the lattice (K) of subquasivarieties of a given quasivariety K S is finite if and only if K is generated by a finite set of finite algebras. This settles a conjecture by Tokarz [6]. We also show that the lattice (S) is not modular.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 74,480

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
27 (#427,989)

6 months
1 (#417,896)

Historical graph of downloads
How can I increase my downloads?