Studia Logica 65 (2):181-198 (2000)
Abstract |
This paper is devoted to the study of some subvarieties of the variety Qof Q-Heyting algebras, that is, Heyting algebras with a quantifier. In particular, a deeper investigation is carried out in the variety Q 3 of three-valued Q-Heyting algebras to show that the structure of the lattice of subvarieties of Qis far more complicated that the lattice of subvarieties of Heyting algebras. We determine the simple and subdirectly irreducible algebras in Q 3 and we construct the lattice of subvarieties (Q 3 ) of the variety Q 3
|
Keywords | Philosophy Logic Mathematical Logic and Foundations Computational Linguistics |
Categories | (categorize this paper) |
Reprint years | 2004 |
DOI | 10.1023/A:1005211613539 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
Varieties of Monadic Heyting Algebras. Part I.Guram Bezhanishvili - 1998 - Studia Logica 61 (3):367-402.
Algebraic Logic, I. Monadic Boolean Algebras.Paul R. Halmos - 1958 - Journal of Symbolic Logic 23 (2):219-222.
Citations of this work BETA
Linear Heyting Algebras with a Quantifier.Laura Rueda - 2001 - Annals of Pure and Applied Logic 108 (1-3):327-343.
Similar books and articles
Varieties of Three-Values Heyting Algebras with a Quantifier.Manuel Abad, J. P. Diaz Varela & L. A. Rueda - 2000 - Studia Logica 65 (2):181-198.
Varieties of Monadic Heyting Algebras. Part III.Guram Bezhanishvili - 2000 - Studia Logica 64 (2):215-256.
Varieties of Monadic Heyting Algebras Part II: Duality Theory.Guram Bezhanishvili - 1999 - Studia Logica 62 (1):21-48.
Varieties of Monadic Heyting Algebras. Part I.Guram Bezhanishvili - 1998 - Studia Logica 61 (3):367-402.
Monadic $$k\times j$$ k × j -rough Heyting algebras.Federico Almiñana & Gustavo Pelaitay - forthcoming - Archive for Mathematical Logic:1-15.
Semisimplicity, EDPC and Discriminator Varieties of Residuated Lattices.Tomasz Kowalski - 2004 - Studia Logica 77 (2):255 - 265.
A Duality for the Algebras of a Łukasiewicz N + 1-Valued Modal System.Bruno Teheux - 2007 - Studia Logica 87 (1):13-36.
Decidability Problem for Finite Heyting Algebras.Katarzyna Idziak & Pawel M. Idziak - 1988 - Journal of Symbolic Logic 53 (3):729-735.
Free Algebras in Varieties of Glivenko MTL-Algebras Satisfying the Equation 2(X2) = (2x)2.Roberto Cignoli & Antoni Torrens Torrell - 2006 - Studia Logica 83 (1-3):157-181.
Bounded Distributive Lattices with Strict Implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
Linear Heyting Algebras with a Quantifier.Laura Rueda - 2001 - Annals of Pure and Applied Logic 108 (1-3):327-343.
On Some Compatible Operations on Heyting Algebras.Rodolfo Ertola Biraben & Hernán San Martín - 2011 - Studia Logica 98 (3):331-345.
An Alternative Definition of Quantifiers on Four-Valued Łukasiewicz Algebras.L. J. González, M. B. Lattanzi & A. G. Petrovich - 2017 - Logica Universalis 11 (4):439-463.
Analytics
Added to PP index
2009-01-28
Total views
75 ( #152,285 of 2,499,202 )
Recent downloads (6 months)
1 ( #419,059 of 2,499,202 )
2009-01-28
Total views
75 ( #152,285 of 2,499,202 )
Recent downloads (6 months)
1 ( #419,059 of 2,499,202 )
How can I increase my downloads?
Downloads