Abstract
In this paper we construct the ortholattices arising in quantum logic starting from the phenomenologically plausible idea of a collection of ensembles subject to passing or failing various “tests.” A collection of ensembles forms a certain kind of preordered set with extra structure called anorthospace; we show that complete ortholattices arise as canonical completions of orthospaces in much the same way as arbitrary complete lattices arise as canonical completions of partially ordered sets. We also show that the canonical completion of an orthospace of ensembles is naturally identifiable as the complete lattice of properties of the ensembles, thereby revealing exactlywhy ortholattices arise in the analysis of “tests” or experimental propositions. Finally, we axiomatize the hitherto implicit concept of “test” and show how they may be correlated with properties of ensembles