Hyperclass Forcing in Morse-Kelley Class Theory

In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Birkhäuser. pp. 17-46 (2018)
  Copy   BIBTEX


In this article we introduce and study hyperclass-forcing in the context of an extension of Morse-Kelley class theory, called MK∗∗. We define this forcing by using a symmetry between MK∗∗ models and models of ZFC− plus there exists a strongly inaccessible cardinal. We develop a coding between β-models ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal {M}$$ \end{document} of MK∗∗ and transitive models M+ of SetMK∗∗ which will allow us to go from ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal {M}$$ \end{document} to M+ and vice versa. So instead of forcing with a hyperclass in MK∗∗ we can force over the corresponding SetMK∗∗ model with a class of conditions. For class-forcing to work in the context of ZFC− we show that the SetMK∗∗ model M+ can be forced to look like Lκ∗[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L_{\kappa ^*}[X]$$ \end{document}, where κ∗ is the height of M+, κ strongly inaccessible in M+ and X ⊆ κ. Over such a model we can apply definable class forcing and we arrive at an extension of M+ from which we can go back to the corresponding β-model of MK∗∗, which will in turn be an extension of the original ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal {M}$$ \end{document}. Our main result combines hyperclass forcing with coding methods of Beller et al. and Friedman to show that every β-model of MK∗∗ can be extended to a minimal such model of MK∗∗ with the same ordinals. A simpler version of the proof also provides a new and analogous minimality result for models of second-order arithmetic.



    Upload a copy of this work     Papers currently archived: 79,898

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Models of weak theories of truth.Mateusz Łełyk & Bartosz Wcisło - 2017 - Archive for Mathematical Logic 56 (5-6):453-474.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Cofinality of the laver ideal.Miroslav Repický - 2016 - Archive for Mathematical Logic 55 (7-8):1025-1036.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Square principles with tail-end agreement.William Chen & Itay Neeman - 2015 - Archive for Mathematical Logic 54 (3-4):439-452.
$$I_0$$ I 0 and combinatorics at $$\lambda ^+$$ λ +.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1-2):131-154.


Added to PP

1 (#1,535,666)

6 months
1 (#479,521)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references