A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...) seems to necessitate the addition of sets to V. We argue that, despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We present a method of interpreting extension-talk (V-logic), and show how it captures satisfaction in `ideal' outer models and relates to impredicative class theories. We provide some reasons to regard the technique as philosophically virtuous, and argue that it opens new doors to philosophical and mathematical discussions for the Universist. (shrink)
The Hyperuniverse Program is a new approach to set-theoretic truth which is based on justifiable principles and leads to the resolution of many questions independent from ZFC. The purpose of this paper is to present this program, to illustrate its mathematical content and implications, and to discuss its philosophical assumptions.
We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...) universe of sets, then we discuss the Zermelian view, featuring a ‘vertical’ multiverse, and give special attention to this multiverse conception in light of the hyperuniverse programme introduced in Arrigoni and Friedman (2013). We argue that the distinctive feature of the multiverse conception chosen for the hyperuniverse programme is its utility for finding new candidates for axioms of set theory. (shrink)
We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...) universe of sets, then we discuss the Zermelian view, featuring a ‘vertical’ multiverse, and give special attention to this multiverse conception in light of the hyperuniverse programme introduced in Arrigoni-Friedman :77–96, 2013). We argue that the distinctive feature of the multiverse conception chosen for the hyperuniverse programme is its utility for finding new candidates for axioms of set theory. (shrink)
We show that there is a [Formula: see text]-model of second-order arithmetic in which the choice scheme holds, but the dependent choice scheme fails for a [Formula: see text]-assertion, confirming a conjecture of Stephen Simpson. We obtain as a corollary that the Reflection Principle, stating that every formula reflects to a transitive set, can fail in models of [Formula: see text]. This work is a rediscovery by the first two authors of a result obtained by the third author in [V. (...) G. Kanovei, On descriptive forms of the countable axiom of choice, Investigations on nonclassical logics and set theory, Work Collect., Moscow, 3-136 ]. (shrink)
I discuss three potential sources of evidence for truth in set theory, coming from set theory’s roles as a branch of mathematics and as a foundation for mathematics as well as from the intrinsic maximality feature of the set concept. I predict that new non first-order axioms will be discovered for which there is evidence of all three types, and that these axioms will have significant first-order consequences which will be regarded as true statements of set theory. The bulk of (...) the paper is concerned with the Hyperuniverse Programme, whose aim is to discover an optimal mathematical principle for expressing the maximality of the set-theoretic universe in height and width. (shrink)
The fact that “natural” theories, i.e. theories which have something like an “idea” to them, are almost always linearly ordered with regard to logical strength has been called one of the great mysteries of the foundation of mathematics. However, one easily establishes the existence of theories with incomparable logical strengths using self-reference . As a result, PA+Con is not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in which (...) PA+Con is the least “natural” theory whose strength is greater than that of PA? In this paper we exhibit natural theories in strength strictly between PA and PA+Con by introducing a notion of slow consistency. (shrink)
The study of Borel equivalence relations under Borel reducibility has developed into an important area of descriptive set theory. The dichotomies of Silver [20] and Harrington, Kechris and Louveau [6] show that with respect to Borel reducibility, any Borel equivalence relation strictly above equality on ω is above equality on , the power set of ω, and any Borel equivalence relation strictly above equality on the reals is above equality modulo finite on . In this article we examine the effective (...) content of these and related results by studying effectively Borel equivalence relations under effectively Borel reducibility. The resulting structure is complex, even for equivalence relations with finitely many equivalence classes. However use of Kleene’s O as a parameter is sufficient to restore the picture from the noneffective setting. A key lemma is that of the existence of two effectively Borel sets of reals, neither of which contains the range of the other under any effectively Borel function; the proof of this result applies Barwise compactness to a deep theorem of Harrington establishing for any recursive ordinal α the existence of singletons whose α-jumps are Turing incomparable. (shrink)
In this paper we review the most common forms of reflection and introduce a new form which we call sharp-generated reflection. We argue that sharp-generated reflection is the strongest form of reflection which can be regarded as a natural generalization of the Lévy reflection theorem. As an application we formulate the principle sharp-maximality with the corresponding hypothesis IMH#. IMH# is an analogue of the IMH :591–600, 2006)) which is compatible with the existence of large cardinals.
We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
An important technique in large cardinal set theory is that of extending an elementary embedding j: M → N between inner models to an elementary embedding j*: M[G] → N[G*] between generic extensions of them. This technique is crucial both in the study of large cardinal preservation and of internal consistency. In easy cases, such as when forcing to make the GCH hold while preserving a measurable cardinal (via a reverse Easton iteration of α-Cohen forcing for successor cardinals α), the (...) generic G* is simply generated by the image of G. But in difficult cases, such as in Woodin's proof that a hypermeasurable is sufficient to obtain a failure of the GCH at a measurable, a preliminary version of G* must be constructed (possibly in a further generic extension of M[G]) and then modified to provide the required G*. In this article we use perfect trees to reduce some difficult cases to easy ones, using fusion as a substitute for distributivity. We apply our technique to provide a new proof of Woodin's theorem as well as the new result that global domination at inaccessibles (the statement that d (κ) is less than 2κ for inaccessible κ, where d (κ) is the dominating number at κ) is internally consistent, given the existence of 0#. (shrink)
In this paper we introduce some fusion properties of forcing notions which guarantee that an iteration with supports of size ⩽κ not only does not collapse κ+ but also preserves the strength of κ. This provides a general theory covering the known cases of tree iterations which preserve large cardinals [3], Friedman and Halilović [5], Friedman and Honzik [6], Friedman and Magidor [8], Friedman and Zdomskyy [10], Honzik [12]).
It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable and that (...) the continuum is a proper class. We examine several principles based on maximality considerations in this framework, and show how some (namely Ordinal Inner Model Hypotheses) enable us to incorporate standard set theories (including ZFC with large cardinals added). We conclude that the systems considered raise questions concerning the foundational purposes of set theory. (shrink)
Discussion of new axioms for set theory has often focused on conceptions of maximality, and how these might relate to the iterative conception of set. This paper provides critical appraisal of how certain maximality axioms behave on different conceptions of ontology concerning the iterative conception. In particular, we argue that forms of multiversism and actualism face complementary problems. The latter view is unable to use maximality axioms that make use of extensions, where the former has to contend with the existence (...) of extensions violating maximality axioms. An analysis of two kinds of multiversism, a Zermelian form and Skolemite form, leads to the conclusion that the kind of maximality captured by an axiom differs substantially according to background ontology. (shrink)
In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...) at λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document}. (shrink)
We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...) equivalence relations and show that existence of infinitely many properly Σ11 equivalence classes that are complete as Σ11 sets is necessary but not sufficient for a relation to be complete in the context of Σ11 equivalence relations. (shrink)
By forcing over a model of with a class-sized partial order preserving this theory we produce a model in which there is a locally defined well-order of the universe; that is, one whose restriction to all levels H is a well-order of H definable over the structure H, by a parameter-free formula. Further, this forcing construction preserves all supercompact cardinals as well as all instances of regular local supercompactness. It is also possible to define variants of this construction which, in (...) addition to forcing a locally defined well-order of the universe, preserve many of the n-huge cardinals from the ground model. (shrink)
Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal κ, κ + is greater than κ + of HOD. The proof uses a very general lemma showing that homogeneity is preserved through certain reverse Easton iterations.
There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where a is a cardinal at most κ⁺⁺. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = κ⁺⁺, the maximum possible) and [1] (for α = κ⁺, after collapsing κ⁺⁺) . In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of (...) Mitchell order α ) , [2] (as in [12], but where κ is the least measurable cardinal and α is less than κ, starting with a measurable of high Mitchell order) and [11] (as in [12], but where κ is the least measurable cardinal, starting with an assumption weaker than a measurable cardinal of Mitchell order 2). In this article we treat all cases by a uniform argument, starting with only one measurable cardinal and applying a cofinality-preserving forcing. The proof uses κ-Sacks forcing and the "tuning fork" technique of [8]. In addition, we explore the possibilities for the number of normal measures on a cardinal at which the GCH fails. (shrink)
Assuming ${2^{{N_0}}}$ = N₁ and ${2^{{N_1}}}$ = N₂, we build a partial order that forces the existence of a well-order of H(ω₂) lightface definable over ⟨H(ω₂), Є⟩ and that preserves cardinal exponentiation and cofinalities.
The continuum function αmaps to2α on regular cardinals is known to have great freedom. Let us say that F is an Easton function iff for regular cardinals α and β, image and α<β→F≤F. The classic example of an Easton function is the continuum function αmaps to2α on regular cardinals. If GCH holds then any Easton function is the continuum function on regular cardinals of some cofinality-preserving extension V[G]; we say that F is realised in V[G]. However if we also wish (...) to preserve measurable cardinals, new restrictions must be put on F. We say that κ is F-hypermeasurable iff there is an elementary embedding j:V→M with critical point κ such that H)Vsubset of or equal toM; j will be called a witnessing embedding. We will show that if GCH holds then for any Easton function F there is a cofinality-preserving generic extension V[G] such that if κ, closed under F, is F-hypermeasurable in V and there is a witnessing embedding j such that j≥F, then κ will remain measurable in V[G]. (shrink)
Assuming the existence of a weakly compact hypermeasurable cardinal we prove that in some forcing extension א ω is a strong limit cardinal and א ω+2 has the tree property. This improves a result of Matthew Foreman (see [2]).
In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa $$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...) \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^\kappa $$\end{document}-bounding, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,>\,$$\end{document}cov_λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_\lambda $$\end{document}), arXiv:0904.0817, Problem 0.5), and in this paper we independently reprove this result by using a different type of construction. This also contributes to a line of research adressed in the survey paper :439–456, 2016). (shrink)
The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...) (H-axioms) in countable transitive models, the collection of which constitutes the `hyperuniverse' (H), has remarkable 1st-order consequences, some of which we review in section 5. (shrink)
This collection documents the work of the Hyperuniverse Project which is a new approach to set-theoretic truth based on justifiable principles and which leads to the resolution of many questions independent from ZFC. The contributions give an overview of the program, illustrate its mathematical content and implications, and also discuss its philosophical assumptions. It will thus be of wide appeal among mathematicians and philosophers with an interest in the foundations of set theory. The Hyperuniverse Project was supported by the John (...) Templeton Foundation from January 2013 until September 2015. (shrink)
The foundation scheme in set theory asserts that every nonempty class has an ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}-minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory. We take KP set theory without foundation as the base theory. We show that KP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} + Π1\documentclass[12pt]{minimal} \usepackage{amsmath} (...) \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _1$$\end{document}-Foundation + V=L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=L$$\end{document} is enough to carry out finite injury arguments in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory, proving both the Friedberg-Muchnik theorem and the Sacks splitting theorem in this theory. In addition, we compare the strengths of some fragments of KP. (shrink)
Louveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs is far from complete.In this article we strengthen the results of [5] by showing that not only does bi-embeddability give rise to analytic equivalence relations which are complete (...) under Borel reducibility, but in fact any analytic equivalence relation is Borel equivalent to such a relation. This result and the techniques introduced answer questions raised in [5] about the comparison between isomorphism and bi-embeddability. Finally, as in [5] our results apply not only to classes of countable structures defined by sentences of ℒω1ω, but also to discrete metric or ultrametric Polish spaces, compact metrizable topological spaces and separable Banach spaces, with various notions of embeddability appropriate for these classes, as well as to actions of Polish monoids. (shrink)
We present a new partial order for directly forcing morasses to exist that enjoys a significant homogeneity property. We then use this forcing in a reverse Easton iteration to obtain an extension universe with morasses at every regular uncountable cardinal, while preserving all n-superstrong , hyperstrong and 1-extendible cardinals. In the latter case, a preliminary forcing to make the GCH hold is required. Our forcing yields morasses that satisfy an extra property related to the homogeneity of the partial order; we (...) refer to them as mangroves and prove that their existence is equivalent to the existence of morasses. Finally, we exhibit a partial order that forces universal morasses to exist at every regular uncountable cardinal, and use this to show that universal morasses are consistent with n-superstrong, hyperstrong, and 1-extendible cardinals. This all contributes to the second author’s outer model programme, the aim of which is to show that L-like principles can hold in outer models which nevertheless contain large cardinals. (shrink)
The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essential sense, a "Σ₂-machine" in that it uses a Σ₂ Liminf Rule to determine cell values at limit stages of time. We give a generalisation of these machines with an appropriate Σ n rule. Such machines either halt or enter an infinite loop by stage ζ(n) = df μζ(n)[∃Σ(n) > ζ(n) L ζ(n) ≺ Σn L Σ(n) ], again generalising precisely the ITTM case. The collection of (...) such machines taken together computes precisely those reals of the least model of analysis. (shrink)
Louveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs (or on any class of countable structures consisting of the models of a sentence of L ω ₁ ω ) is far from complete (see [5, 2]). In (...) this article we strengthen the results of [5] by showing that not only does bi-embeddability give rise to analytic equivalence relations which are complete under Borel reducibility, but in fact any analytic equivalence relation is Borel equivalent to such a relation. This result and the techniques introduced answer questions raised in [5] about the comparison between isomorphism and bi-embeddability. Finally, as in [5] our results apply not only to classes of countable structures defined by sentences of ω ₁ ω , but also to discrete metric or ultrametric Polish spaces, compact metrizable topological spaces and separable Banach spaces, with various notions of embeddability appropriate for these classes, as well as to actions of Polish monoids. (shrink)
Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying (...) a nonreflecting stationary set or a${\kappa ^{ + + }}$-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large cardinal into${\aleph _\omega }$. (shrink)
The forcing method is a powerful tool to prove the consistency of set-theoretic assertions relative to the consistency of the axioms of set theory. Laver’s theorem and Bukovský’s theorem assert that set-generic extensions of a given ground model constitute a quite reasonable and sufficiently general class of standard models of set-theory.In Sects. 2 and 3 of this note, we give a proof of Bukovsky’s theorem in a modern setting ). In Sect. 4 we check that the multiverse of set-generic extensions (...) can be treated as a collection of countable transitive models in a conservative extension of ZFC. The last section then deals with the problem of the existence of infinitely-many independent buttons, which arose in the modal-theoretic approach to the set-generic multiverse by Hamkins and Loewe :1793–1817, 2008). (shrink)
We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both (...) classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees. (shrink)
We construct two Borel equivalence relations on the generalized Baire space κ κ , κ <κ = κ > ω, with the property that neither of them is Borel reducible to the other. A small modification of the construction shows that the straightforward generalization of the Glimm-Effros dichotomy fails.
Global co-stationarity of the ground model from an N₂-c.c, forcing which adds a new subset of N₁ is internally consistent relative to an ω₁-Erdös hyperstrong cardinal and a sufficiently large measurable above.