Tame properties of sets and functions definable in weakly o-minimal structures

Archive for Mathematical Logic 53 (3-4):433-447 (2014)
  Copy   BIBTEX

Abstract

Let M=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}=}$$\end{document} be a weakly o-minimal expansion of a dense linear order without endpoints. Some tame properties of sets and functions definable in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} which hold in o-minimal structures, are examined. One of them is the intermediate value property, say IVP. It is shown that strongly continuous definable functions in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} satisfy an extended version of IVP. After introducing a weak version of definable connectedness in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document}, we prove that strong cells in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} are weakly definably connected, so every set definable in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} is a finite union of its weakly definably connected components, provided that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} has the strong cell decomposition property. Then, we consider a local continuity property for definable functions in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} and conclude some results on cell decomposition regarding that property. Finally, we extend the notion of having no dense graph which was examined for definable functions in and related to uniform finiteness, definable completeness, and others. We show that every weakly o-minimal structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} having cell decomposition, satisfies NDG, i.e. every definable function in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{M}}}$$\end{document} has no dense graph.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A Note on Weakly O-Minimal Structures and Definable Completeness.Alfred Dolich - 2007 - Notre Dame Journal of Formal Logic 48 (2):281-292.
Weakly o-minimal nonvaluational structures.Roman Wencel - 2008 - Annals of Pure and Applied Logic 154 (3):139-162.
Weakly o-minimal structures and some of their properties.B. Sh Kulpeshov - 1998 - Journal of Symbolic Logic 63 (4):1511-1528.
Expansions of o-Minimal Structures by Iteration Sequences.Chris Miller & James Tyne - 2006 - Notre Dame Journal of Formal Logic 47 (1):93-99.
First order tameness of measures.Tobias Kaiser - 2012 - Annals of Pure and Applied Logic 163 (12):1903-1927.
On the weak Kleene scheme in Kripke's theory of truth.James Cain & Zlatan Damnjanovic - 1991 - Journal of Symbolic Logic 56 (4):1452-1468.
Dp-Minimality: Basic Facts and Examples.Alfred Dolich, John Goodrick & David Lippel - 2011 - Notre Dame Journal of Formal Logic 52 (3):267-288.
Presburger sets and p-minimal fields.Raf Cluckers - 2003 - Journal of Symbolic Logic 68 (1):153-162.
Cell decompositions of C-minimal structures.Deirdre Haskell & Dugald Macpherson - 1994 - Annals of Pure and Applied Logic 66 (2):113-162.
Definable sets in Boolean ordered o-minimal structures. II.Roman Wencel - 2003 - Journal of Symbolic Logic 68 (1):35-51.

Analytics

Added to PP
2015-09-03

Downloads
20 (#747,345)

6 months
2 (#1,232,442)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Strong cell decomposition property in o-minimal traces.Somayyeh Tari - 2020 - Archive for Mathematical Logic 60 (1):135-144.
A note on prime models in weakly o‐minimal structures.Somayyeh Tari - 2017 - Mathematical Logic Quarterly 63 (1-2):109-113.
A criterion for the strong cell decomposition property.Somayyeh Tari - 2023 - Archive for Mathematical Logic 62 (7):871-887.
Pseudo definably connected definable sets.Jafar S. Eivazloo & Somayyeh Tari - 2016 - Mathematical Logic Quarterly 62 (3):241-248.

Add more citations

References found in this work

Real closed rings II. model theory.Gregory Cherlin & Max A. Dickmann - 1983 - Annals of Pure and Applied Logic 25 (3):213-231.
Weakly o-minimal nonvaluational structures.Roman Wencel - 2008 - Annals of Pure and Applied Logic 154 (3):139-162.
Elimination of quantifiers for ordered valuation rings.M. A. Dickmann - 1987 - Journal of Symbolic Logic 52 (1):116-128.
T-Convexity and Tame Extensions II.Lou Van Den Dries - 1997 - Journal of Symbolic Logic 62 (1):14 - 34.

View all 8 references / Add more references