Switch to: References

Add citations

You must login to add citations.
  1. Existence Is Evidence of Immortality.Michael Huemer - 2021 - Noûs 55 (1):128-151.
    Time may be infinite in both directions. If it is, then, if persons could live at most once in all of time, the probability that you would be alive now would be zero. But if persons can live more than once, the probability that you would be alive now would be nonzero. Since you are alive now, with certainty, either the past is finite, or persons can live more than once.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Entanglement, Complexity, and Causal Asymmetry in Quantum Theories.Porter Williams - 2022 - Foundations of Physics 52 (2):1-38.
    It is often claimed that one cannot locate a notion of causation in fundamental physical theories. The reason most commonly given is that the dynamics of those theories do not support any distinction between the past and the future, and this vitiates any attempt to locate a notion of causal asymmetry—and thus of causation—in fundamental physical theories. I argue that this is incorrect: the ubiquitous generation of entanglement between quantum systems grounds a relevant asymmetry in the dynamical evolution of quantum (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The quantitative content of statistical mechanics.David Wallace - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):285-293.
  • In Search of Time Lost: Asymmetry of Time and Irreversibility in Natural Processes. [REVIEW]A. L. Kuzemsky - 2020 - Foundations of Science 25 (3):597-645.
    In this survey, we discuss and analyze foundational issues of the problem of time and its asymmetry from a unified standpoint. Our aim is to discuss concisely the current theories and underlying notions, including interdisciplinary aspects, such as the role of time and temporality in quantum and statistical physics, biology, and cosmology. We compare some sophisticated ideas and approaches for the treatment of the problem of time and its asymmetry by thoroughly considering various aspects of the second law of thermodynamics, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Once and for all: the curious role of probability in the Past Hypothesis.Harvey R. Brown - unknown
    The Past Hypothesis defended by David Wallace in his 2011 account of macroscopic irreversibility is technically distinct from, but in the same spirit as, that of David Albert in his 2000 book Time and Chance. I am concerned in this essay with the role of objective probability in both accounts, which I find obscure. Most of the analysis will be devoted to the classical treatments by both authors, but a final section will question whether Wallace's quantum version involving unitary dynamics (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why Black Hole Information Loss is Paradoxical.David Wallace - unknown
    I distinguish between two versions of the black hole information-loss paradox. The first arises from apparent failure of unitarity on the spacetime of a completely evaporating black hole, which appears to be non-globally-hyperbolic; this is the most commonly discussed version of the paradox in the foundational and semipopular literature, and the case for calling it `paradoxical' is less than compelling. But the second arises from a clash between a fully-statistical-mechanical interpretation of black hole evaporation and the quantum-field-theoretic description used in (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Necessity of Gibbsian Statistical Mechanics.David Wallace - unknown
    In discussions of the foundations of statistical mechanics, it is widely held that the Gibbsian and Boltzmannian approaches are incompatible but empirically equivalent; the Gibbsian approach may be calculationally preferable but only the Boltzmannian approach is conceptually satisfactory. I argue against both assumptions. Gibbsian statistical mechanics is applicable to a wide variety of problems and systems, such as the calculation of transport coefficients and the statistical mechanics and thermodynamics of mesoscopic systems, in which the Boltzmannian approach is inapplicable. And the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • What statistical mechanics actually does.David Wallace - unknown
    I give a brief account of the way in which thermodynamics and statistical mechanics actually work as contemporary scientific theories, and in particular of what statistical mechanics contributes to thermodynamics over and above any supposed underpinning of the latter's general principles. In doing so, I attempt to illustrate that statistical mechanics should not be thought of wholly or even primarily as itself a foundational project for thermodynamics, and that conceiving of it this way potentially distorts the foundational study of statistical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations